【題目】已知函數(shù)f(x)=x2﹣2x﹣8,g(x)=2x2﹣4x﹣16,
(1)求不等式g(x)<0的解集;
(2)若對一切x>5,均有f(x)≥(m+2)x﹣m﹣15成立,求實數(shù)m的取值范圍.
【答案】
(1)解:由g(x)=2x2﹣4x﹣16<0,得x2﹣2x﹣8<0,
即(x+2)(x﹣4)<0,解得﹣2<x<4.
所以不等式g(x)<0的解集為{x|﹣2<x<4}
(2)解:因為f(x)=x2﹣2x﹣8,
當x>5時,f(x)≥(m+2)x﹣m﹣15成立,
則x2﹣2x﹣8≥(m+2)x﹣m﹣15成立,
即x2﹣4x+7≥m(x﹣1).
所以對一切x>5,均有不等式 ≥m成立.
而 =(x﹣1)+ ﹣2≥2 ﹣2=2(當x=3時等號成立).
因為x=5,所以, =3.
實數(shù)m的取值范圍是(﹣∞,3]
【解析】(1)直接因式分解后求解不等式的解集;(2)把函數(shù)f(x)的解析式代入f(x)≥(m+2)x﹣m﹣15,分離變量m后利用基本不等式求解m的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)O為△ABC的外心,若 + + = ,則M是△ABC的( )
A.重心(三條中線交點)
B.內(nèi)心(三條角平分線交點)
C.垂心(三條高線交點)
D.外心(三邊中垂線交點)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,(a∈R)
(1)若f(x)在x=0處取得極值,確定a的值.
(2)若f(x)在R上為增函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱與底面垂直,AB=AC=1,AA1=2,且P,Q,M分別是BB1 , CC1 , B1C1的中點,AB⊥AQ.
(1)求證:AB⊥AC;
(2)求證:AQ∥平面A1PM;
(3)求AQ與平面BCC1B1所成角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知動直線l過點 ,且與圓O:x2+y2=1交于A、B兩點.
(1)若直線l的斜率為 ,求△OAB的面積;
(2)若直線l的斜率為0,點C是圓O上任意一點,求CA2+CB2的取值范圍;
(3)是否存在一個定點Q(不同于點P),對于任意不與y軸重合的直線l,都有PQ平分∠AQB,若存在,求出定點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}中,a1=3,n(an+1﹣an)=an+1,n∈N*若對于任意的a∈[﹣1,1],n∈N* , 不等式 ﹣2at+1恒成立,則實數(shù)t的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個大型噴水池的中央有一個強力噴水柱,為了測量噴水柱噴水的高度,某人在噴水柱正西方向的點A測的水柱頂端的仰角為45°,沿點A向北偏東30°前進100m到達點B.在B點測得水柱頂端的仰角為30°,則水柱的高度是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】鈍角△OAB三邊的比為2 :2 :( ﹣ ),O為坐標原點,A(2,2 )、B(a,a),則a的值為( )
A.2
B.
C.2 或
D. +
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,若向量 =(﹣cosB,sinC), =(﹣cosC,﹣sinB),且 . (Ⅰ)求角A的大;
(Ⅱ)若b+c=4,△ABC的面積 ,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com