已知橢圓,過(guò)其左焦點(diǎn)且斜率為的直線與橢圓及其準(zhǔn)線的交點(diǎn)從左到右的順序?yàn)?img width=92 height=19 src="http://thumb.zyjl.cn/pic1/1899/sx/87/25087.gif">(如圖),設(shè)

(1)求的解析式;

(2)求的最值.

(1) 

(2)的最大值為,當(dāng)時(shí),取得最大值.

的最小值為,當(dāng)時(shí)取得最小值.


解析:

(1)設(shè)橢圓的長(zhǎng)半軸、短半軸及半焦距依次為,則,,,

橢圓的焦點(diǎn)為

故直線方程為

又橢圓的準(zhǔn)線方程為,即

消去

整理得

,恒成立,

都在直線上,

,,

,,,

,

(2)由可知

,

的最大值為,當(dāng)時(shí),取得最大值.

的最小值為,當(dāng)時(shí)取得最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省宿州市高三第三次模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓C:其左、右焦點(diǎn)分別為F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|=(O為坐標(biāo)原點(diǎn))。

(1)求橢圓C的方程;

(2)過(guò)點(diǎn)l交橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn):若存在,求出M的坐標(biāo);若不存在,說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:安徽省蚌埠市2010年高三第三次質(zhì)檢數(shù)學(xué)試題(理科) 題型:填空題

已知橢圓C:其左、右焦點(diǎn)分別為F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|=(O為坐標(biāo)原點(diǎn))。

   (1)求橢圓C的方程

   (2)過(guò)點(diǎn)l交橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn):若存在,求出M的坐標(biāo);若不存在,說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年正定中學(xué)高二下學(xué)期期末考試數(shù)學(xué)試題 題型:解答題

(12分)已知橢圓C:其左、右焦點(diǎn)分別為F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|=(O為坐標(biāo)原點(diǎn))。

   (1)求橢圓C的方程;

   (2)過(guò)點(diǎn)l交橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn):若存在,求出M的坐標(biāo);若不存在,說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:安徽省蚌埠市2010屆高三第三次質(zhì)檢(理) 題型:解答題

 

        已知橢圓C:其左、右焦點(diǎn)分別為F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且|OP|=(O為坐標(biāo)原點(diǎn))。

   (1)求橢圓C的方程;

   (2)過(guò)點(diǎn)l交橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn):若存在,求出M的坐標(biāo);若不存在,說(shuō)明理由。

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案