精英家教網 > 高中數學 > 題目詳情
過點(0,1)的直線與x2+y2=4相交于A、B兩點,則|AB|的最小值為______.
∵x2+y2=4的圓心O(0,0),半徑r=2,
∴點(0,1)到圓心O(0,0)的距離d=1,
∴點(0,1)在圓內.
如圖,|AB|最小時,弦心距最大為1,
∴|AB|min=2
22-12
=2
3

故答案為:2
3

練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知圓C過點P(1,1),且與圓M:(x+2)2+(x+2)2=r2(r>0)2關于直線x+y+2=0對稱.
⑴求圓C的方程;
⑵設Q為圓C上的一個動點,求的最小值;
⑶過點P作兩條相異直線分別與圓C相交于A,B,且直線PA和直線PB的傾斜角互補,O為坐標原點,試判斷直線OP和AB是否平行?請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

直線ax+y-1=0與直線2x+3y-2=0垂直,則實數a的值為( 。
A.
2
3
B.-1C.-2D.-
3
2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,直線AB與x軸交于點A(1,0),與y軸交于點B(0,-2).
(1)求直線AB的解析式;
(2)若直線AB上的點C在第一象限,且S△BOC=2,求點C的坐標.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知兩直線l1:x+8y+7=0和l2:2x+y-1=0.
(1)求l1與l2交點坐標;
(2)求過l1與l2交點且與直線x+y+1=0平行的直線方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

直線l過定點P(0,1),且與直線l1:x-3y+10=0,l2:2x+y-8=0分別交于A、B兩點、若線段AB的中點為P,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知三角形的頂點是A(-5,0)、B(3,-3)、C(0,2),
(1)求直線AB的方程;
(2)求△ABC的面積;
(3)若過點C直線l與線段AB相交,求直線l的斜率k的范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知P(a,b),Q(c,d)是直線Ax+By+C=0(AB≠0)上定點,M是平面上的動點,則|MP|+|MQ|的最小值是( 。
A.|
a-c
A
|
A2-B2
B.|a-c|
A2+B2
C.|
b-d
A
|
A2+B2
D.|b-d|
A2+B2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知直線l過點(-2,0),當直線l與圓x2+y2=2x有兩個交點時,其斜率k的取值范圍是(  )
A.(-2,2)B.(-)
C.(-,)D.(-,)

查看答案和解析>>

同步練習冊答案