設(shè)數(shù)列的前n項(xiàng)和為為等比數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和。
(1)     
(2)

【錯解分析】(1)求數(shù)列的通項(xiàng)公式時(shí),容易遺忘對n=1情況的檢驗(yàn)。
(2)錯位相減法雖然是一種常見方法,但同時(shí)也是容易出錯的地方,一定要仔細(xì)。
【正解】解:(1)當(dāng)

的通項(xiàng)公式為的等差數(shù)列.
設(shè)的通項(xiàng)公式為

(2)

兩式相減得:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

無窮等差數(shù)列{an}各項(xiàng)都是正數(shù),Sn是它的前n項(xiàng)和,若a1+a3+a8=a42,則a5·S4的最大值是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分)
已知等差數(shù)列的前項(xiàng)和為,且,,數(shù)列滿足:
,,
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè),,證明: 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是公比為q的等比數(shù)列,其前n項(xiàng)的積為,并且滿足條件>1,>1, <0,給出下列結(jié)論:① 0<q<1;② T198<1;③>1。其中正確結(jié)論的序號是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

實(shí)數(shù)成等差數(shù)列,成等比數(shù)列,則的大小關(guān)系是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若數(shù)列、的通項(xiàng)公式分別是,,且,對任意恒成立,則常數(shù)的取值范圍是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù),,公比為,且,
(Ⅰ)求;
(Ⅱ)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列為等差數(shù)列且,則的值為( )
A.B.C.D.—

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則將某些數(shù)染成紅色:先染1,再染兩個(gè)偶數(shù)2、4;再染4后面最鄰近的三個(gè)連續(xù)奇數(shù)5、7、9;再染9后面最鄰近的四個(gè)連續(xù)偶數(shù)10、12、14、16;再染此后最鄰近的五個(gè)連續(xù)奇數(shù)17、19、21、23、25;按此規(guī)則一直染下去,得到一紅色子數(shù)列1,2,4,5,7,9,10,12,14,16,17,…….則在這個(gè)紅色子數(shù)列中,由1開始的第2011個(gè)數(shù)是_____________.

查看答案和解析>>

同步練習(xí)冊答案