如圖1所示,在邊長為12的正方形AA′A′1A1中,BB1∥CC1∥AA1,且AB=3,BC=4,AA′1分別交BB1,CC1于P,Q,將該正方形沿BB1、CC1折疊,使得A′A′1與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1,
(Ⅰ)求證:AB⊥PQ;
(Ⅱ)在底邊AC上有一點M,AM:MC=3:4,求證:BM∥面APQ;
(Ⅲ)求直線BC與平面APQ所成角的正弦值。
(Ⅰ)證明:因為AB=3,BC=4,因此AC=5,
從而,即AB⊥BC,
又因為AB⊥BB1,而BC∩BB1=B,
從而AB⊥平面BC1
又PC平面BC1,
所以,AB⊥PQ。
(Ⅱ)證明:過M作MN∥CQ交AQ于N,連結(jié)PN,
因為AM:MC=3:4,
∴AM:AC=MN:CQ=3:7,
∴MN=PB=3,
∵PB∥CQ,
∴MN∥PB,
∴四邊形PBMN為平行四邊形,
∴BM∥PN,
∴BM∥平面APQ。
(Ⅲ)解:由圖1知,PB=AB=3,QC=7,分別以BA,BC,BB1為x,y,z軸,
則A(3,0,0),C(0,4,0),P(0,0,3),Q(0,4,7),
 ,
設(shè)平面APQ的法向量為,
所以,得
令a=1,則c=1,b=-1,
 所以,直線BC與平面APQ所成角的正弦值為
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖1所示,在邊長為12的正方形AA′A′1A1中,BB1∥CC1∥AA1,且AB=3,BC=4,AA′1分別交BB1,CC1于點P、Q,將該正方形沿BB1、CC1折疊,使得A′A′1與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1,請在圖2中解決下列問題:
(1)求證:AB⊥PQ;
(2)在底邊AC上有一點M,滿足AM;MC=3:4,求證:BM∥平面APQ.
(3)求直線BC與平面APQ所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1所示,在邊長為12的正方形ADD1A1中,點B,C在線段AD上,且AB=3,BC=4,作BB1∥AA1,分別交A1D1,AD1于點B1,P,作CC1∥AA1,分別交A1D1,AD1于點C1,Q,將該正方形沿BB1,CC1折疊,使得DD1與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1
(Ⅰ)求證:AB⊥平面BCC1B1;
(Ⅱ)求四棱錐A-BCQP的體積;
(Ⅲ)求平面PQA與平面BCA所成銳二面角的余弦值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖1所示,在邊長為12的正方形AA′A1′A1中,點B,C在線段AA′上,且AB=3,BC=4,作BB1∥AA1,分別交A1A1′、AA1′于點B1、P,作CC1∥AA1,分別交A1A1′、AA1′于點C1、Q,將該正方形沿BB1、CC1折疊,使得A′A1′與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1
(1)在三棱柱ABC-A1B1C1中,求證:AB⊥平面BCC1B1;
(2)求平面APQ將三棱柱ABC-A1B1C1分成上、下兩部分幾何體的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1所示,在邊長為12的正方形ADD1A1中,點B,C在線段AD上,且AB=3,BC=4,作BB1∥AA1,分別交A1D1,AD1于點B1,P,作CC1∥AA1,分別交A1D1,AD1于點C1,Q,將該正方形沿BB1,CC1折疊,使得DD1與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1
(Ⅰ)求證:AB⊥平面BCC1B1;
(Ⅱ)求四棱錐A-BCQP的體積;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1所示,在邊長為的正方形中,,且,,分別交于點,將該正方形沿、折疊,使得重合,構(gòu)成如圖2所示的三棱柱

(Ⅰ)求證:;

(Ⅱ)在底邊上有一點,,

求證:

(III)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案