【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為,曲線C2的直角坐標(biāo)方程為.
(1)若直線l與曲線C1交于M、N兩點(diǎn),求線段MN的長(zhǎng)度;
(2)若直線l與x軸,y軸分別交于A、B兩點(diǎn),點(diǎn)P在曲線C2上,求的取值范圍.
【答案】(1)(2)
【解析】
(1)將直線l的參數(shù)方程消去參數(shù),得到直角坐標(biāo)方程,將圓C1的極坐標(biāo)方程,轉(zhuǎn)化為直角坐標(biāo)方程,然后利用“r,d”法求弦長(zhǎng).
(2)將曲線C2的直角坐標(biāo)方程轉(zhuǎn)換為參數(shù)方程為(0≤θ≤π),由A(1,0),B(0,1),P(2cosθ,2sinθ),得到,的坐標(biāo),再利用數(shù)量積公式得到,然后用正弦函數(shù)的性質(zhì)求解.
(1)直線l的參數(shù)方程為(t為參數(shù)),消去參數(shù),
得直角坐標(biāo)方程為x+y﹣1=0,
因?yàn)榍C1的極坐標(biāo)方程為,
所以
所以直角坐標(biāo)方程為x2+y2﹣2x+2y=0,
標(biāo)準(zhǔn)式方程為(x﹣1)2+(y+1)2=2,
所以圓心(1,﹣1)到直線x+y﹣1=0的距離d,
所以弦長(zhǎng)|MN|=2.
(2)因?yàn)榍C2的直角坐標(biāo)方程為.
所以x2+y2=4,轉(zhuǎn)換為參數(shù)方程為(0≤θ≤π).
因?yàn)?/span>A(1,0),B(0,1),點(diǎn)P在曲線C2上,故P(2cosθ,2sinθ),
所以,,(0≤θ≤π),
所以,
因?yàn)?/span>
所以,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4一4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線 是圓心的極坐標(biāo)為()且經(jīng)過(guò)極點(diǎn)的圓
(1)求曲線C1的極坐標(biāo)方程和C2的普通方程;
(2)已知射線分別與曲線C1,C2交于點(diǎn)A,B(點(diǎn)B異于坐標(biāo)原點(diǎn)O),求線段AB的長(zhǎng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年春,新型冠狀病毒在我國(guó)湖北武漢爆發(fā)并訊速蔓延,病毒傳染性強(qiáng)并嚴(yán)重危害人民生命安全,國(guó)家衛(wèi)健委果斷要求全體人民自我居家隔離,為支援湖北武漢新型冠狀病毒疫情防控工作,各地醫(yī)護(hù)人員紛紛逆行,才使得病毒蔓延得到了有效控制.某社區(qū)為保障居民的生活不受影響,由社區(qū)志愿者為其配送蔬菜、大米等生活用品,記者隨機(jī)抽查了男、女居民各100名對(duì)志愿者所買生活用品滿意度的評(píng)價(jià),得到下面的2×2列聯(lián)表.
特別滿意 | 基本滿意 | |
男 | 80 | 20 |
女 | 95 | 5 |
(1)被調(diào)查的男性居民中有5個(gè)年輕人,其中有2名對(duì)志愿者所買生活用品特別滿意,現(xiàn)在這5名年輕人中隨機(jī)抽取3人,求至多有1人特別滿意的概率.
(2)能否有99%的把握認(rèn)為男、女居民對(duì)志愿者所買生活用品的評(píng)價(jià)有差異?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為平行四邊形,點(diǎn)在面內(nèi)的射影為,,點(diǎn)到平面的距離為,且直線與垂直.
(Ⅰ)在棱上找一點(diǎn),使直線與平面平行,并說(shuō)明理由;
(Ⅱ)在(Ⅰ)的條件下,求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓錐的頂點(diǎn)為A,高和底面的半徑相等,BE是底面圓的一條直徑,點(diǎn)D為底面圓周上的一點(diǎn),且∠ABD=60°,則異面直線AB與DE所成角的正弦值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A,B,C是球O球面上的三點(diǎn),AC=BC=6,AB,且四面體OABC的體積為24.則球O的表面積為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為.
(1)求曲線C1的極坐標(biāo)方程以及曲線C2的直角坐標(biāo)方程;
(2)若直線l:y=kx與曲線C1、曲線C2在第一象限交于P、Q,且|OQ|=|PQ|,點(diǎn)M的直角坐標(biāo)為(1,0),求△PMQ的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體中,棱長(zhǎng)為2,分別為棱的中點(diǎn),為底面正方形內(nèi)一點(diǎn)(含邊界)且與面所成角的正切值為,直線與面的交點(diǎn)為,當(dāng)到的距離最小時(shí),則四面體外接球的表面積為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中是自然對(duì)數(shù)的底數(shù),是函數(shù)的導(dǎo)數(shù).
(1)若是上的單調(diào)函數(shù),求的值;
(2)當(dāng)時(shí),求證:若,且,則.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com