(本大題18分)
(1)已知平面上兩定點(diǎn).,且動(dòng)點(diǎn)M標(biāo)滿足=0,求動(dòng)點(diǎn)的軌跡方程;
(2)若把(1)的M的軌跡圖像向右平移一個(gè)單位,再向下平移一個(gè)單位,恰與直線x+ky–3=0 相切,試求實(shí)數(shù)k的值;
(3)如圖,l是經(jīng)過(guò)橢圓長(zhǎng)軸頂點(diǎn)A且與長(zhǎng)軸垂直的直線,E.F是兩個(gè)焦點(diǎn),點(diǎn)PÎl,P不與A重合。若ÐEPF=,求的取值范圍。
并將此題類比到雙曲線:,是經(jīng)過(guò)焦點(diǎn)且與實(shí)軸垂直的直線,是兩個(gè)頂點(diǎn),點(diǎn)PÎl,P不與重合,請(qǐng)作出其圖像。若,寫(xiě)出角的取值范圍。(不需要解題過(guò)程)
(1)設(shè),此即點(diǎn)M的軌跡方程!3分
(2)將x2+y2=4向右平移一個(gè)單位,再向下平移一個(gè)單位后,
得到圓(x–1)2+(y+1)2=4……………………………………………………5分
依題意有,得k=0或……………………………………………8分
(3)(。┳C明:不妨設(shè)點(diǎn)P在A的右側(cè),并設(shè)P(t, –5)(t>0),
則…………………………………………………10分
所以……………………12分
所以0<tana≤。顯然a為銳角,即:0<a≤arctan……………………………14分
(ⅱ)如圖…………………………………………………………………………………16分
(圖形中沒(méi)有體現(xiàn)出雙曲線的漸近性的,扣1分)
。………………………………………………………………18分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本大題滿分10分).能否將下列數(shù)組中的數(shù)填入3×3的方格表,每個(gè)小方格中填一個(gè)數(shù),使得每行、每列、兩條對(duì)角線上的3個(gè)數(shù)的乘積都相等?若能,請(qǐng)給出一種填法;若不能,請(qǐng)給予證明.(Ⅰ)2,4,6,8,12,18,24,36,48; (Ⅱ)2,4,6,8,12,18,24,36,72.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市浦東新區(qū)高三第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本大題滿分18分)本大題共有3個(gè)小題,第1小題滿分4分,第2小題滿6分,第3小題滿8分.
已知函數(shù);,
(1)當(dāng)為偶函數(shù)時(shí),求的值。
(2)當(dāng)時(shí),在上是單調(diào)遞增函數(shù),求的取值范圍。
(3)當(dāng)時(shí),(其中,),若,且函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱,在處取得最小值,試探討應(yīng)該滿足的條件。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省寧波市八校高三聯(lián)考數(shù)學(xué)文卷 題型:解答題
三、解答題:本大題共5小題,共72分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。
18.(本小題滿分14分) A、B是單位圓O上的動(dòng)點(diǎn),且A、B分別在第一、二象限,C是圓O與軸正半軸的交點(diǎn), 為等腰直角三角形。記 (1)若A點(diǎn)的坐標(biāo)為,求 的值 (2)求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解
(本大題18分)
閱讀下面所給材料:已知數(shù)列{an},a1=2,an=3an–1+2,求數(shù)列的通項(xiàng)an。
解:令an=an–1=x,則有x=3x+2,所以x= –1,故原遞推式an=3an–1+2可轉(zhuǎn)化為:
an+1=3(an–1+1),因此數(shù)列{an+1}是首項(xiàng)為a1+1,公比為3的等比數(shù)列。
根據(jù)上述材料所給出提示,解答下列問(wèn)題:
已知數(shù)列{an},a1=1,an=3an–1+4,
(1)求數(shù)列的通項(xiàng)an;并用解析幾何中的有關(guān)思想方法來(lái)解釋其原理;
(2)若記Sn=,求Sn;
(3)若數(shù)列{bn}滿足:b1=10,bn+1=100,利用所學(xué)過(guò)的知識(shí),把問(wèn)題轉(zhuǎn)化為可以用閱讀材料的提示,求出解數(shù)列{bn}的通項(xiàng)公式bn。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com