【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,( 為參數(shù)),以為極點, 軸的正半軸建立極坐標(biāo)系,曲線是圓心在極軸上且經(jīng)過極點的圓,射線與曲線交于點

)求曲線的普通方程及的直角坐標(biāo)方程;

)在極坐標(biāo)系中, 是曲線的兩點,求的值.

【答案】(1) .(2)

【解析】試題分析:題設(shè)給出了曲線的參數(shù)方程,利用消去參數(shù)就能得到的普通方程,它為橢圓方程.對于曲線,題設(shè)只給出了圓心的位置和圓上一點,根據(jù)它們可以到圓心的坐標(biāo)和半徑,從而可得圓的直角坐標(biāo)方程.在(2)中,因為兩點的極角相差,故先求出的極坐標(biāo)方程,得到極徑與極角的關(guān)系,即可求出和為.

解析:(1) 曲線的參數(shù)方程為為參數(shù)),則普通方程為

曲線是圓心在極軸上且經(jīng)過極點的圓,射線與曲線交于點,所以曲線在直角坐標(biāo)系中的圓心為,半徑為,其普通方程為.

(2)曲線的極坐標(biāo)方程為,所以,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程選講

在直角坐標(biāo)系中,曲線C1的參數(shù)方程為(a為參數(shù)),以原點O為極點,

以x軸正半軸為極軸,建立極坐標(biāo)系,曲 線C2的極坐標(biāo)方程為

(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程.

(2)設(shè)P為曲線C1上的動點,求點P到C2上點的距離的最小值,并求此時點P坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年全國數(shù)學(xué)奧賽試行改革:在高二一年中舉行5次全區(qū)競賽,學(xué)生如果其中2次成績達全區(qū)前20名即可進入省隊培訓(xùn),不用參加其余的競賽,而每個學(xué)生最多也只能參加5次競賽.規(guī)定:若前4次競賽成績都沒有達全區(qū)前20名,則第5次不能參加競賽.假設(shè)某學(xué)生每次成績達全區(qū)前20名的概率都是,每次競賽成績達全區(qū)前20名與否互相獨立.

(1)求該學(xué)生進入省隊的概率.

(2)如果該學(xué)生進入省隊或參加完5次競賽就結(jié)束,記該學(xué)生參加競賽的次數(shù)為,求的分布列及的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著我國經(jīng)濟的快速發(fā)展,民用汽車的保有量也迅速增長.機動車保有量的發(fā)展影響到環(huán)境質(zhì)量、交通安全、道路建設(shè)等諸多方面.在我國,尤其是大中型城市,機動車已成為城市空氣污染的重要來源.因此,合理預(yù)測機動車保有量是未來進行機動車污染防治規(guī)劃、道路發(fā)展規(guī)劃等的重要前提.從2012年到2016年,根據(jù)“云南省某市國民經(jīng)濟和社會發(fā)展統(tǒng)計公報”中公布的數(shù)據(jù),該市機動車保有量數(shù)據(jù)如表所示.

年份

2012

2013

2014

2015

2016

年份代碼

1

2

3

4

5

機動車保有量(萬輛)

169

181

196

215

230

(1)在圖所給的坐標(biāo)系中作出數(shù)據(jù)對應(yīng)的散點圖;

(2)建立機動車保有量關(guān)于年份代碼的回歸方程;

(3)按照當(dāng)前的變化趨勢,預(yù)測2017年該市機動車保有量.

附注:回歸直線方程中的斜率和截距的最小二乘估計公式分別為:

, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定一個數(shù)列{an},在這個數(shù)列里,任取m(m≥3mN*)項,并且不改變它們在數(shù)列{an}中的先后次序,得到的數(shù)列稱為數(shù)列{an}的一個m階子數(shù)列.已知數(shù)列{an}的通項公式為an (nN*,a為常數(shù)),等差數(shù)列a2a3,a6是數(shù)列{an}的一個3階子數(shù)列

1)求a的值;

2)等差數(shù)列b1b2,,bm{an}的一個m (m≥3mN*) 階子數(shù)列,且b1 (k為常數(shù),kN*,k≥2),求證:mk1;

3等比數(shù)列c1c2,,cm{an}的一個m (m≥3,mN*) 階子數(shù)列,

求證:c1c2cm≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,BC所對的邊分別為a,b,c,滿足

(1)求角C的大小;

(2)設(shè)函數(shù)f(x)=cos(2xC),將f(x)的圖象向右平移個單位長度后得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分13分)已知動圓過定點且與軸截得的弦的長為

)求動圓圓心的軌跡的方程;

)已知點,動直線和坐標(biāo)軸不垂直,且與軌跡相交于兩點,試問:在軸上是否存在一定點,使直線過點,且使得直線,,的斜率依次成等差數(shù)列?若存在,請求出定點的坐標(biāo);否則,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列為遞增的等比數(shù)列, ,

數(shù)列滿足

(Ⅰ)求數(shù)列的通項公式;(Ⅱ)求證: 是等差數(shù)列;

(Ⅲ)設(shè)數(shù)列滿足,且數(shù)列的前項和,并求使得對任意都成立的正整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是邊長為的正方形,平面,,,與平面所成角為

Ⅰ)求證:平面

Ⅱ)求二面角的余弦值.

Ⅲ)設(shè)點是線段上一個動點,試確定點的位置,使得平面,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案