如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=3,BC=2,BB1=4,E為AD的中點(diǎn),點(diǎn)P在線段C1E上,則點(diǎn)P到直線BB1的距離的最小值為( 。
A.2B.
10
C.
3
10
5
D.
2
5
5

如圖所示,取A1D1的中點(diǎn)F,連接EF,EC1,
∵EFCC1,EF=CC1=BB1,BB1⊥底面ABCD,
∴四邊形EFB1B是矩形.
∴BB1EF,
又EF?平面C1EF,BB1?平面C1EF,∴BB1平面C1EF.
∴直線B1B上任一點(diǎn)到平面C1EF的距離是兩條異面直線C1E與BB1的距離.
過點(diǎn)B1作B1M⊥C1F,
∵平面C1EF⊥平面A1B1C1D1
∴B1M⊥平面C1EF.
過點(diǎn)M作MPEF交C1E于點(diǎn)P,則MPC1C.
取B1N=MP,連接PN,則四邊形MPNB1是矩形.
可得NP⊥平面C1EF,
在△B1C1F中,B1M•C1F=B1C1•A1B1,又C1F=
AB2+(
1
2
AD)2
=
10
,得B1M=
3×2
10
=
3
10
5

∴點(diǎn)P到直線CC1的距離的最小值為
3
10
5

故選:C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將邊長(zhǎng)為a的正方形ABCD沿對(duì)角線AC折成直二面角,則BD的長(zhǎng)度為( 。
A.
1
2
a
B.
2
2
a
C.
3
2
a
D.a(chǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知△ABC為直角三角形,且∠ACB=90°,AB=8,點(diǎn)P是平面ABC外一點(diǎn),若PA=PB=PC,且PO⊥平面ABC,O為垂足,則OC=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知矩形的周長(zhǎng)為36,矩形繞它的一條邊旋轉(zhuǎn)形成一個(gè)圓柱,要使旋轉(zhuǎn)形成的圓柱的側(cè)面積最大,則矩形的長(zhǎng)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正三棱柱ABC-A1B1C1中,AB=1.若二面角C-AB-C1的大小為60°,則點(diǎn)C到平面ABC1的距離為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

以下四個(gè)結(jié)論:
①若a?α,b?β,則a,b為異面直線;
②若a?α,b?α,則a,b為異面直線;
③沒有公共點(diǎn)的兩條直線是平行直線;
④兩條不平行的直線就一定相交.
其中正確答案的個(gè)數(shù)是( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若一個(gè)球的半徑為1,A、B為球面上兩點(diǎn),且|AB|=1,則A、B兩點(diǎn)的球面距離為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直三棱柱ADE-BCF中,∠ADE=90°,AD=AE=EF=2,M,N分別是AF,BC的中點(diǎn).
(1)求證:MN平面CDEF;
(2)求多面體A-CDEF的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a,b為兩條直線,α,β為兩個(gè)平面,下列四個(gè)命題
①ab,aα⇒bα;②a⊥b,a⊥α⇒bα;
③aα,βα⇒aβ;④a⊥α,β⊥α⇒aβ,
其中不正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案