精英家教網 > 高中數學 > 題目詳情

(本小題滿分13分)

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)設,是橢圓上關于軸對稱的任意兩個不同的點,連結交橢圓于另一點,求直線的斜率的取值范圍;

(Ⅲ)在(Ⅱ)的條件下,證明直線軸相交于定點.

 

 

(本小題滿分13分)

解:(Ⅰ)由題意知,

所以,即

又因為,

所以,

故橢圓的方程為.…………………………………………4分

(Ⅱ)由題意知直線的斜率存在,設直線的方程為

  得.    ①…………6分

,又不合題意,

所以直線的斜率的取值范圍是.………………8分

(Ⅲ)設點,,則

直線的方程為

,得.…………………………………………10分

,代入,

整理,得.                   ②

由①得 ,代入②

整理,得

所以直線軸相交于定點.……………………………………13分

練習冊系列答案
相關習題

科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數.

(1)求函數的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數在區(qū)間上的圖象.

(3)設0<x<,且方程有兩個不同的實數根,求實數m的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知定義域為的函數是奇函數.

(1)求的值;(2)判斷函數的單調性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數,數列{}的首項.

(1) 求函數的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數列的前項和

 

 

查看答案和解析>>

同步練習冊答案