如圖所示,在矩形ABCD中,AB=a,BC=a,以對(duì)角線AC為折線將直角三角形ABC向上翻折到三角形APC的位置(B點(diǎn)與P點(diǎn)重合),P點(diǎn)在平面ACD上的射影恰好落在邊AD上的H處.
(1)求證:PA⊥CD;
(2)求直線PC與平面ACD所成角的正切值.
(1)詳見解析,(2).
解析試題分析:(1)折疊問題,首先要明確折疊前后量的變化,尤其是垂直條件的變化,本題要證明線線垂直,首先找線面垂直,因?yàn)殛P(guān)于垂直條件較多,所以考慮證明面,折疊前后都有條件,而折疊后面,因此可由線面垂直得到 ,這樣就可由線面垂直判定定理證到面 ,(2)求線面角,關(guān)鍵作出面的垂線.本題簡單,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/de/8/g1yan2.png" style="vertical-align:middle;" />面,所以直線PC與平面ACD所成角就為,下面只需在直角三角形中解出的正切值就可.
試題解析:(1) 證明: 由題設(shè),平面ACD,平面PAD平面ACD, 3分
交線為AD,又CDAD,CD平面PAD,PA平面PAD,CDPA 6分
(2)連接CH,則PCH為直線PC與平面ACD所成的角。
作HGAC,垂足為G,連接PG,則AC平面PHG ACPG, 9分
又在矩形ABCD中,AB=a,BC=a,
在直角PGA中,PA=a,AG=
在直角HAG中,AH==,又AC="2a," 2分
在直角CAH中,根據(jù)余弦定理可得,CH=,
在直角 PHA中可得PH=,tan 13分
考點(diǎn):線面垂直判定,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在側(cè)棱垂直底面的四棱柱ABCDA1B1C1D1中,AD∥BC,AD⊥AB,AB=,AD=2,BC=4,AA1=2,E是DD1的中點(diǎn),F是平面B1C1E與直線AA1的交點(diǎn).
(1)證明:①EF∥A1D1;②BA1⊥平面B1C1EF.
(2)求BC1與平面B1C1EF所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在直三棱柱ABCA1B1C1中,D、E分別為AA1、CC1的中點(diǎn),AC⊥BE,點(diǎn)F在線段AB上,且AB=4AF.若M為線段BE上一點(diǎn),試確定M在線段BE上的位置,使得C1D∥平面B1FM.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點(diǎn)M、N是正方體ABCD-A1B1C1D1的兩棱A1A與A1B1的中點(diǎn),P是正方形ABCD的中心,
(1)求證:平面.
(2)求證:平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,四邊形EFGH所在平面為三棱錐A-BCD的一個(gè)截面,四邊形EFGH為平行四邊形.
(1)求證:AB∥平面EFGH,CD∥平面EFGH.
(2)若AB=4,CD=6,求四邊形EFGH周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐P-ABCD的底面為直角梯形,AB∥CD,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=AB=1,M是PB的中點(diǎn).
(1)求證:AM=CM;
(2)若N是PC的中點(diǎn),求證:DN∥平面AMC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在圓錐中,已知,的直徑,點(diǎn)在底面圓周上,且,為的中點(diǎn).
(1)證明:平面;
(2)求點(diǎn)到面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知三棱錐的側(cè)棱與底面垂直,,, M、N分別是的中點(diǎn),點(diǎn)P在線段上,且,
(1)證明:無論取何值,總有.
(2)當(dāng)時(shí),求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com