設(shè)F1,F2是橢圓E:+=1(a>b>0)的左、右焦點,P為直線x=上一點,△F2PF1是底角為30°的等腰三角形,則E的離心率為(  )
A.B.C.D.
C
如圖所示,設(shè)直線x=a與x軸的交點為Q,

由題意可知,
∠F2F1P=∠F1PF2=30°,
|PF2|=|F1F2|=2c,
∴∠PF2Q=60°,∠F2PQ=30°.
∴|F2Q|=|PF2|.
a-c=·2c,
∴e==.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0)的焦距為4,且過點P(,).
(1)求橢圓C的方程;
(2)設(shè)Q(x0,y0)(x0y0≠0)為橢圓C上一點.過點Q作x軸的垂線,垂足為E.取點A(0,2),連接AE,過點A作AE的垂線交x軸于點D.點G是點D關(guān)于y軸的對稱點,作直線QG,問這樣作出的直線QG是否與橢圓C一定有唯一的公共點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在原點的橢圓C的一個焦點為F(4,0),長軸端點到較近焦點的距離為1,A(x1,y1),B(x2,y2)(x1≠x2)為橢圓上不同的兩點.
(1)求橢圓C的方程.
(2)若x1+x2=8,在x軸上是否存在一點D,使||=||?若存在,求出D點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的中心在原點,對稱軸為坐標(biāo)軸,且長軸長是短軸長的2倍.又點P(4,1)在橢圓上,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的左、右焦點坐標(biāo)分別是(-,0),(,0),離心率是.直線y=t與橢圓C交于不同的兩點M,N,以線段MN為直徑作圓P,圓心為P.
(1)求橢圓C的方程;
(2)若圓P與x軸相切,求圓心P的坐標(biāo);
(3)設(shè)Q(x,y)是圓P上的動點,當(dāng)t變化時,求y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓+=1上有兩個動點P、Q,E(3,0),EP⊥EQ,則·的最小值為(  )
A.6B.3-C.9D.12-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1、F2是橢圓C:+=1(a>b>0)的兩個焦點,P為橢圓C上一點,且,若△PF1F2的面積為9,則b=    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的焦點分別為,點在橢圓上,如果線段的中點在軸上,那么               。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩定點A(1,1),B(-1,-1),動點P(x,y)滿足·,則點P的軌跡是(  )
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

同步練習(xí)冊答案