【題目】已知函數(shù)f(x)= ,若存在實(shí)數(shù)x1 , x2 , x3 , x4滿足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4 , 則x1x2x3x4取值范圍是( )
A.(60,96)
B.(45,72)
C.(30,48)
D.(15,24)
【答案】B
【解析】解:函數(shù)f(x)的圖象如下圖所示:
若滿足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4,
則0<x1<1,1<x1<3,
則log3x1=﹣log3x2,即log3x1+log3x2=log3x1x2=0,
則x1x2=1,
同時(shí)x3∈(3,6),x4∈(12,15),
∵x3,x4關(guān)于x=9對(duì)稱(chēng),∴ =9,
則x3+x4=18,則x4=18﹣x3,
則x1x2x3x4=x3x4=x3(18﹣x3)=﹣x32+18x3=﹣(x3﹣9)2+81,
∵x3∈(3,6),
∴x3x4∈(45,72),
即x1x2x3x4∈(45,72),
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=blnx+a(a>0,b>0)在x=1處的切線與圓(x﹣2)2+y2=4相交于A、B兩點(diǎn),并且弦長(zhǎng)|AB|= 2 ,則 + ﹣ 的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)y=f(x)滿足:①對(duì)于任意的x∈R,都有f(x+2)=f(x﹣2);②函數(shù)y=f(x+2)是偶函數(shù);③當(dāng)x∈(0,2]時(shí),f(x)=ex﹣ ,a=f(﹣5),b=f( ).c=f( ),則a,b,c的大小關(guān)系是( )
A.a<b<c
B.c<a<b
C.c<a<b
D.b<a<c
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)向量 =(sin2ωx,cos2ωx), =(cosφ,sinφ),其中|φ|< ,ω>0,函數(shù)f(x)= 的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)(即函數(shù)取得最大值的點(diǎn))為 ,在原點(diǎn)右側(cè)與x軸的第一個(gè)交點(diǎn)為 .
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)在△ABC中,角A′B′C的對(duì)邊分別是a′b′c′若f(C)=﹣1, ,且a+b=2 ,求邊長(zhǎng)c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問(wèn)題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見(jiàn)次日行里數(shù),請(qǐng)公仔細(xì)算相還.”其大意為:“有一個(gè)人走了378里路,第一天健步行走,從第二天起因腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地.”問(wèn)此人第4天和第5天共走了( )
A.60里
B.48里
C.36里
D.24里
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1、F2分別是雙曲線 ﹣ =1(a>0,b>0)的左、右焦點(diǎn),過(guò)點(diǎn)F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點(diǎn)M,若點(diǎn)M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是( )
A.(1, )
B.( ,+∞)
C.( ,2)
D.(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx,g(x)= ﹣ (x為實(shí)常數(shù)).
(1)當(dāng)a=1時(shí),求函數(shù)φ(x)=f(x)﹣g(x)在x∈[4,+∞)上的最小值;
(2)若方程e2f(x)=g(x)(其中e=2.71828…)在區(qū)間[ ]上有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+ ),將其圖象向右平移 ,則所得圖象的一條對(duì)稱(chēng)軸是( )
A.x=
B.x=
C.x=
D.x=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,若圓x2+y2=a2被直線x﹣y﹣ =0截得的弦長(zhǎng)為2
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)A、B為動(dòng)直線y=k(x﹣1),k≠0與橢圓C的兩個(gè)交點(diǎn),問(wèn):在x軸上是否存在定點(diǎn)M,使得 為定值?若存在,試求出點(diǎn)M的坐標(biāo)和定值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com