【題目】分別求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.
(Ⅰ)焦點在軸上,焦距是,離心率;
(Ⅱ)一個焦點為的等軸雙曲線.
【答案】(Ⅰ);(Ⅱ).
【解析】
試題分析:(Ⅰ)焦點在軸上的雙曲線的標(biāo)準(zhǔn)方程為,焦距為,離心率,若焦距是,則,離心率,則,由因為雙曲線方程中,所以,所以所求雙曲線的標(biāo)準(zhǔn)方程為;(Ⅱ)由雙曲線的一個焦點為可知,雙曲線的焦點在軸上,,又由等軸雙曲線的性質(zhì)可知,所以,所以,因此所求的雙曲線的標(biāo)準(zhǔn)方程為.本題主要考查求雙曲線的標(biāo)準(zhǔn)方程,根據(jù)待定系數(shù)法求的值,然后再根據(jù)焦點的位置就可以寫出雙曲線的標(biāo)準(zhǔn)方程.
試題解析:(Ⅰ)由條件可知,又,所以,,
故雙曲線的標(biāo)準(zhǔn)方程為.5分
(Ⅱ)設(shè)所求等軸雙曲線:,則,,
故雙曲線的標(biāo)準(zhǔn)方程為.10分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某紀(jì)念章從2016年10月1日起開始上市,通過市場調(diào)查,得到該紀(jì)念章每1枚的市場價(單位:元)與上市時間(單位:天)的數(shù)據(jù)如下:
上市時間天 | 4 | 10 | 36 |
市場價元 | 90 | 51 | 90 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個恰當(dāng)?shù)暮瘮?shù)描述該紀(jì)念章的市場價與上市時間的變化關(guān)系并說明理由:①;②;③.
(2)利用你選取的函數(shù),求該紀(jì)念章市場價最低時的上市天數(shù)及最低的價格.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用反證法證明命題 “自然數(shù)a、b 、c中恰有一個偶數(shù)”時,需假設(shè)原命題不成立,下列假設(shè)正確的是( )
A.a、b、c都是奇數(shù) B.a、b 、c都是偶數(shù)
C.a、b、c中或都是奇數(shù)或至少有兩個偶數(shù) D.a、b 、c中至少有兩個偶數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓.
(1)求橢圓C的離心率;
(2)設(shè)O為原點,若點A在橢圓上,點B在直線x=4上,且,求直線AB截圓所得弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下程序運行后的輸出結(jié)果為
i=1
WHILE i<8
i=i+2
S=2*i+3
i=i–1
WEND
PRINT S
END
A. 17 B. 19 C. 21 D. 23
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知①正方形的對角線相等;②平行四邊形的對角線相等;③正方形是平行四邊形. ①、②、③組合成“三段論”.根據(jù)“三段論”推理出一個結(jié)論,則這個結(jié)論是( )
A. 正方形是平行四邊形 B. 平行四邊形的對角線相等
C. 正方形的對角線相等 D. 以上均不正確
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),存在實數(shù),,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓,點,是圓上任意一點,線段的垂直平分線和半徑相交于.
(1)求動點的軌跡的方程;
(2)設(shè)直線與(Ⅰ)中軌跡相交于,兩點,直線,,的斜率分別為,,(其中),的面積為,以,為直徑的圓的面積分別為,,若,,恰好構(gòu)成等比數(shù)列,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實數(shù),使恒成立,若存在,求出實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com