【題目】在直三棱柱中, , , 是的中點(diǎn).
(1)求證: 平面;
(2)求二面角的余弦值.
【答案】(1)見解析;(2).
【解析】試題分析: (1)第(1)問, 連接,交于點(diǎn),連結(jié),證明即得平面 . (2)第(2)問, 以為坐標(biāo)原點(diǎn),以為軸,以為軸,以過點(diǎn)垂直于的直線為軸,建立空間直角坐標(biāo)系,利用向量法求二面角的余弦值.
試題解析:
(1)連接,交于點(diǎn),連結(jié),
∵在直三棱柱中, ,
∴是正方形,∴是的中點(diǎn),
∵是的中點(diǎn),∴是的中位線,∴,
∵不包含于平面, 平面,
∴平面.
(2)以為坐標(biāo)原點(diǎn),以為軸,以為軸,
以過點(diǎn)垂直于的直線為軸,建立空間直角坐標(biāo)系,
∵, , 是的中點(diǎn),
∴, , , ,
∴, , ,
設(shè)平面的法向量,則, ,
∴,∴,
設(shè)平面的法向量,則, ,
∴,∴,
設(shè)二面角的平面角為,
.∴二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)= 在區(qū)間(﹣∞,2)上為單調(diào)遞增函數(shù),則實(shí)數(shù)a的取值范圍是( )
A.[0,+∞)
B.(0,e]
C.(﹣∞,﹣1]
D.(﹣∞,﹣e)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),( )
(1)若,求曲線在處的切線方程.
(2)對任意,總存在,使得(其中為的導(dǎo)數(shù))成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對稱,證明當(dāng)時, ;
(3)如果,且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中, 平面是BC的中點(diǎn).
求證: ;
求異面直線AE與所成的角的大。
若G為中點(diǎn),求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,C是以AB為直徑的圓O上異于A,B的點(diǎn),平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F(xiàn) 分別是PC,PB的中點(diǎn),記平面AEF與平面ABC的交線為直線l.
(Ⅰ)求證:直線l⊥平面PAC;
(Ⅱ)直線l上是否存在點(diǎn)Q,使直線PQ分別與平面AEF、直線EF所成的角互余?若存在,求出|AQ|的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為,點(diǎn)的坐標(biāo)為.
(1)求過點(diǎn)且與圓相切的直線方程;
(2)過點(diǎn)任作一條直線與圓交于不同兩點(diǎn),,且圓交軸正半軸于點(diǎn),求證:直線與的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中點(diǎn). (Ⅰ)求證:AM∥面SCD;
(Ⅱ)求面SCD與面SAB所成二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)N是直線CD上的動點(diǎn),MN與面SAB所成的角為θ,求sinθ的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com