【題目】已知橢圓(ab>0)的一個焦點與拋物線y2=4x的焦點F重合,且橢圓短軸的兩個端點與點F構(gòu)成正三角形.

(1)求橢圓的方程;

(2)若過點(1,0)的直線l與橢圓交于不同的兩點P,Q,試問在x軸上是否存在定點E(m,0),使恒為定值?若存在,求出E的坐標,并求出這個定值;若不存在,請說明理由.

【答案】(1);(2)見解析.

【解析】試題分析:1)求出拋物線的焦點坐標,可得c,再求出b的值,即可求橢圓的方程;
2)分類討論,設(shè)出直線方程,代入橢圓方程,利用韋達定理,結(jié)合向量的數(shù)量積公式,即可求得結(jié)論.

試題解析:

(1)由題意,知拋物線的焦點為F(,0),

所以c.

因為橢圓短軸的兩個端點與F構(gòu)成正三角形,

所以b×=1.

可求得a=2,故橢圓的方程為y2=1.

(2)假設(shè)存在滿足條件的點E,當直線l的斜率存在時設(shè)其斜率為k,則l的方程為yk(x-1).

得(4k2+1)x2-8k2x+4k2-4=0.

設(shè)P(x1,y1),Q(x2,y2),

所以x1x2,x1x2.

=(mx1,-y1),=(mx2,-y2),

所以·=(mx1)(mx2)+y1y2

m2m(x1x2)+x1x2y1y2

m2m(x1x2)+x1x2k2(x1-1)(x2-1)

m2k2

(4m2-8m+1)+.

要使·為定值,則2m=0,

m,此時·.

當直線l的斜率不存在時,

不妨取PQ,

E,可得,,

所以·.

綜上,存在點E,使·為定值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓=1(a>b>0)的右焦點為F(2,0),且過點(2).

(1)求橢圓的標準方程;

(2)設(shè)直線l:y=kx(k>0)與橢圓在第一象限的交點為M,過點F且斜率為-1的直線與l交于點N,若sin∠FON(O為坐標原點),求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最大值為,其圖像相鄰兩條對稱軸之間的距離為,且的圖像關(guān)于點對稱,則下列判斷正確的是()

A. 函數(shù)上單調(diào)遞增

B. 函數(shù)的圖像關(guān)于直線對稱

C. 時,函數(shù)的最小值為

D. 要得到函數(shù)的圖像,只需要將的圖像向右平移個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從裝有個紅球和個黒球的口袋內(nèi)任取個球,則互為對立事件是( )

A. 至少有一個黒球與都是黒球B. 至少有一個黒球與都是紅球

C. 至少有一個黒球與至少有個紅球D. 恰有個黒球與恰有個黒球

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}中,a1=8,a4=2,且滿足an+2-2an+1an=0.

(1)求數(shù)列的通項公式;

(2)設(shè)Sn=|a1|+|a2|+…+|an|,求Sn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高三年級有學生1000名,經(jīng)調(diào)查,其中750名同學經(jīng)常參加體育鍛煉(稱為類同學),另外250名同學不經(jīng)常參加體育鍛煉(稱為類同學),現(xiàn)用分層抽樣方法(按類、類分兩層)從該年級的學生中共抽取100名同學,如果以身高達作為達標的標準,對抽取的100名學生,得到以下列聯(lián)表:

身高達標

身高不達標

總計

經(jīng)常參加體育鍛煉

40

不經(jīng)常參加體育鍛煉

15

總計

100

(Ⅰ)完成上表;

(Ⅱ)能否在犯錯誤的概率不超過0.05的前提下認為經(jīng)常參加體育鍛煉與身高達標有關(guān)系(的觀測值精確到0.001)?

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知是正三角形,EACD都垂直于平面ABC,且,,FBE的中點,

求證:(1平面ABC;

2平面EDB.

3)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某養(yǎng)殖的水產(chǎn)品在臨近收獲時,工人隨機從水中捕撈只,其質(zhì)量分別在

(單位:克),經(jīng)統(tǒng)計分布直方圖如圖所示.

(1)求這組數(shù)據(jù)的眾數(shù);

(2)現(xiàn)按分層抽樣從質(zhì)量為的水產(chǎn)品種隨機抽取只,在從這只中隨機抽取只,求這只水產(chǎn)品恰有只在內(nèi)的概率;

(3)某經(jīng)銷商來收購水產(chǎn)品時,該養(yǎng)殖場現(xiàn)還有水產(chǎn)品共計約只要出售,經(jīng)銷商提出如下兩種方案:

方案A:所有水產(chǎn)品以元/只收購;

方案B:對于質(zhì)量低于克的水產(chǎn)品以元/只收購,不低于克的以元/只收購,

通過計算確定養(yǎng)殖場選擇哪種方案獲利更多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線l的參數(shù)方程為(其中t為參數(shù)).現(xiàn)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=6cosθ

(Ⅰ)寫出直線l普通方程和曲線C的直角坐標方程;

(Ⅱ)過點M-1,0)且與直線l平行的直線l1CA,B兩點,求|AB|

查看答案和解析>>

同步練習冊答案