【題目】已知函數(shù),且上的最大值為.
求函數(shù)的解析式;
判斷在內(nèi)的零點的個數(shù),并加以證明.
【答案】(1) (2) 函數(shù)在內(nèi)恰有兩個零點
【解析】
(1)函數(shù)恒成立轉(zhuǎn)化為在上恒成立,即,令,利用函數(shù)的導(dǎo)數(shù),求出即可.
(2),求出導(dǎo)函數(shù),判斷函數(shù)的單調(diào)性,判斷函數(shù)的零點,通過當(dāng)時,當(dāng)時,令,利用函數(shù)的導(dǎo)數(shù)求解函數(shù)的極值,轉(zhuǎn)化求解函數(shù)的零點個數(shù)即可。
(1)因為,所以,,所以
由題意,在上恒成立,且能取到等號
即在上恒成立,且能取到等號,即
令,則
所以函數(shù)在上單調(diào)遞增,
所以,解得,
所以。
(2)因為
當(dāng)時,因為,所以函數(shù)在上單調(diào)遞增
因為,所以函數(shù)在上有唯一零點
當(dāng)時,令
因為,所以函數(shù)即當(dāng)時單調(diào)遞減
又因為,所以存在唯一使
所以當(dāng)時,;當(dāng)時,
所以在上單調(diào)遞增,在上單調(diào)遞減
注意到,,所以
所以函數(shù)在上沒有零點,在上有唯一零點,
由得函數(shù)在內(nèi)恰有兩個零點。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示,分別是圖象的最高點與相鄰的最低點,且,,為坐標(biāo)原點.
(1)求函數(shù)的解析式;
(2)將函數(shù)的圖象向左平移1個單位后得到函數(shù)的圖象,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,)的圖象的相鄰兩條對稱軸之間的距離為4,且有一個零點為.
(1)求函數(shù)的解析式;
(2)若,且,求的值;
(3)若在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有邊長分別3,4,5的三角形兩個,邊長分別4,5,的三角形四個,邊長分別為,4,5的三角形六個.用上述三角形為面,可以拼成______個四面體.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機(jī)生產(chǎn)企業(yè)為了解消費者對某款手機(jī)的認(rèn)同情況,通過銷售部隨機(jī)抽取50名購買該款手機(jī)的消費者,并發(fā)出問卷調(diào)查(滿分50分),該問卷只有20份給予回復(fù),這20份的評分如下:
男 | 47,36,28,48,48,44,50,46,50,37,35,49 |
女 | 38,37,50,36,38,45,29,39 |
(1)完成下面的莖葉圖,并求12名男消費者評分的中位數(shù)與8名女消費者評分的眾數(shù)及平均值;
男 | 女 | |
2 | ||
3 | ||
4 | ||
5 |
滿意 | 不滿意 | 合計 | |
男 | |||
女 | |||
合計 |
(2)若大于40分為“滿意”,否則為“不滿意”,完成上面的列聯(lián)表,并判斷是否有95%的把握認(rèn)為消費者對該款手機(jī)的“滿意度”與性別有關(guān);
(3)若從回復(fù)的20名消費者中按性別用分層抽樣的方法抽取5人,再從這5人中隨機(jī)抽取2人作進(jìn)一步調(diào)查,求至少有1名女性消費者被抽到的概率.
附:
0.05 | 0.025 | 0.01 | |
3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下關(guān)于線性方程組解的個數(shù)的命題.
①,②,③,④,
(1)方程組①可能有無窮多組解;
(2)方程組②可能有且只有兩組不同的解;
(3)方程組③可能有且只有唯一一組解;
(4)方程組④可能有且只有唯一一組解.
其中真命題的序號為________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,已知,對于任意的,有.
(1)求數(shù)列的通項公式.
(2)若數(shù)列滿足,求數(shù)列的通項公式.
(3)設(shè),是否存在實數(shù),當(dāng)時,恒成立?若存在,求實數(shù)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心C在直線上的圓過兩點,.
(1)求圓C的方程;
(2)若直線與圓C相交于A,B兩點,①當(dāng)時,求AB的方程;②在y軸上是否存在定點M,使,若存在,求出M的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com