3.已知二項式${({x+\frac{1}{2ax}})^9}$的展開式中x3的系數(shù)為$-\frac{21}{2}$,則$\int_1^e{({x+\frac{a}{x}})}$dx的值為( 。
A.$\frac{{{e^2}+1}}{2}$B.$\frac{{{e^2}-3}}{2}$C.$\frac{{{e^2}+3}}{2}$D.$\frac{{{e^2}-5}}{2}$

分析 根據(jù)二項式展開式的通項公式,令展開式中x的指數(shù)為3求出r的值,寫出x3的系數(shù),求得a的值,計算$\int_1^e{({x+\frac{a}{x}})}$dx的值.

解答 解:二項式${({x+\frac{1}{2ax}})^9}$展開式的通項公式為:
Tr+1=${C}_{9}^{r}$•x9-r•${(\frac{1}{2ax})}^{r}$=${C}_{9}^{r}$•${(\frac{1}{2a})}^{r}$•x9-2r,
令9-2r=3,解得r=3;
所以展開式中x3的系數(shù)為:
${C}_{9}^{3}$•${(\frac{1}{2a})}^{3}$=$-\frac{21}{2}$,
解得a=-1;
所以$\int_1^e{({x+\frac{a}{x}})}$dx=${∫}_{1}^{e}$(x-$\frac{1}{x}$)dx=($\frac{1}{2}$x2-lnx)${|}_{1}^{e}$=($\frac{1}{2}$e2-1)-($\frac{1}{2}$-0)=$\frac{{e}^{2}-3}{2}$.
故選:B.

點評 本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知x=1是f(x)=2x+$\frac{x}$+lnx的一個極值點.
(Ⅰ)求b的值;
(Ⅱ)設函數(shù)g(x)=f(x)-$\frac{3+a}{x}$,若函數(shù)g(x)在區(qū)間[1,2]內單調遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)f(x)=xln(x-1)的零點是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在三棱錐S-ABC中,SA⊥平面ABC,點D是SC的中點,且平面ABD⊥平面SAC
(Ⅰ)求證:AB⊥平面SAC
(Ⅱ)若SA=2AB=3AC,求二面角S-BD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:ρsin2θ=2cosθ,過點P(2,-1)的直線l:$\left\{{\begin{array}{l}{x=2+tcos{{45}°}}\\{y=-1+tsin{{45}°}}\end{array}}$(t為參數(shù))與曲線C交于M、N兩點.
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)求|PM|2+|PN|2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列命題中正確的是( 。
A.若?服從正態(tài)分布N(1,2),且P(?>2)=0.1,則P(0<?<2)=0.2
B.命題:“?x>1,x2>1”的否定是“?x≤1,x2≤1”
C.直線ax+y+2=0與ax-y+4=0垂直的充要條件為a=±1
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在直四棱柱ABCD-A1B1C1D1中,AB∥DC,AA1=1,AB:AD:BC:DC=3:4:5:6,側棱AA1⊥底面ABCD.
(I)證明:平面DCC1D1⊥平面ADD1A1;
( II)若直線AA1與平面AB1C所成的角的余弦值為$\frac{\sqrt{13}}{7}$,求AB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.將一骰子拋擲兩次,所得向上點數(shù)分別為m和n,則函數(shù)y=x2-2(2m-n)x+1在[6,+∞)上為增函數(shù)的概率是( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{5}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.(1)若$log_a^{\;}\frac{3}{4}$<1(a>1),求實數(shù)a的取值范圍;
(2)已知a=log32,那么log38-2log36用a表示.

查看答案和解析>>

同步練習冊答案