【題目】下列說法正確的是( )
①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣.
②某地氣象局預(yù)報(bào):5月9日本地降水概率為,結(jié)果這天沒下雨,這表明天氣預(yù)報(bào)并不科學(xué).
③在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好.
④在回歸直線方程中,當(dāng)解釋變量每增加1個(gè)單位時(shí),預(yù)報(bào)變量增加0.1個(gè)單位.
A.①②B.③④C.①③D.②④
【答案】B
【解析】
①由于間隔相同,這樣的抽樣是系統(tǒng)抽樣;
②降水概率為90%的含義是指降水的可能性為90%,但不一定降水;
③在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好,正確;
④在回歸直線方程0.1x+10中,回歸系數(shù)為0.1,利用回歸系數(shù)的意義可得結(jié)論.
解:①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從某處抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),由于間隔相同,這樣的抽樣是系統(tǒng)抽樣,故①不正確;
②降水概率為90%的含義是指降水的可能性為90%,但不一定降水,故②不正確;
③在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好,正確;
④在回歸直線方程0.1x+10中,回歸系數(shù)為0.1,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量 增加0.1個(gè)單位,故④正確.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出如下四個(gè)命題:①若“且”為假命題,則均為假命題;②命題“若,則”的否命題為“若,則”; ③“,則”的否定是“,則”;④在中,“”是“”的充要條件.其中正確的命題的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來越便利.根據(jù)大數(shù)據(jù)統(tǒng)計(jì),某條地鐵線路運(yùn)行時(shí),發(fā)車時(shí)間間隔t(單位:分鐘)滿足:4≤t≤15,N,平均每趟地鐵的載客人數(shù)p(t)(單位:人)與發(fā)車時(shí)間間隔t近似地滿足下列函數(shù)關(guān)系:,其中.
(1)若平均每趟地鐵的載客人數(shù)不超過1500人,試求發(fā)車時(shí)間間隔t的值.
(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問當(dāng)發(fā)車時(shí)間間隔t為多少時(shí),平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上海地鐵四通八達(dá),給市民出行帶來便利,已知某條線路運(yùn)行時(shí),地鐵的發(fā)車時(shí)間間隔(單位:分字)滿足:,,經(jīng)測(cè)算,地鐵載客量與發(fā)車時(shí)間間隔滿足,其中.
(1)請(qǐng)你說明的實(shí)際意義;
(2)若該線路每分鐘的凈收益為(元),問當(dāng)發(fā)車時(shí)間間隔為多少時(shí),該線路每分鐘的凈收益最大?并求最大凈收益.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(I)若,判斷函數(shù)在的單調(diào)性;
(II)設(shè),對(duì),有恒成立,求的最小值;
(III)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知在平面直角坐標(biāo)系中,圓的參數(shù)方程為 (為參數(shù)).以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系.
(I)求圓的普通方程及其極坐標(biāo)方程;
(II)設(shè)直線的極坐標(biāo)方程為,射線與圓的交點(diǎn)為,與直線的交點(diǎn)為Q,求線段PQ的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在處的切線方程;
(2)當(dāng)時(shí),證明:函數(shù)只有一個(gè)零點(diǎn);
(3)若函數(shù)的極大值等于,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知在平面直角坐標(biāo)系中,圓的參數(shù)方程為 (為參數(shù)).以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系.
(I)求圓的普通方程及其極坐標(biāo)方程;
(II)設(shè)直線的極坐標(biāo)方程為,射線與圓的交點(diǎn)為,與直線的交點(diǎn)為Q,求線段PQ的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠從今年一月起,若不改善生產(chǎn)環(huán)境,按生產(chǎn)現(xiàn)狀,每月收入為80萬元,同時(shí)將受到環(huán)保部門的處罰,第一個(gè)月罰4萬元,以后每月增加2萬元.如果從今年一月起投資500萬元添加回收凈化設(shè)備(改造設(shè)備時(shí)間不計(jì)),一方面可以改善環(huán)境,另一方面可以大大降低原料成本,據(jù)測(cè)算,添加回收凈化設(shè)備并投產(chǎn)后的前4個(gè)月中的累計(jì)生產(chǎn)凈收入g(n)是生產(chǎn)時(shí)間個(gè)月的二次函數(shù)是常數(shù),且前3個(gè)月的累計(jì)生產(chǎn)凈收入可達(dá)309萬元,從第5個(gè)月開始,每個(gè)月的生產(chǎn)凈收入都與第4個(gè)月相同,同時(shí),該廠不但不受處罰,而且還將得到環(huán)保部門的一次性獎(jiǎng)勵(lì)120萬元.
(1)求前6個(gè)月的累計(jì)生產(chǎn)凈收入g(6)的值;
(2)問經(jīng)過多少個(gè)月,投資開始見效,即投資改造后的純收入多于不改造的純收入.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com