(2011•洛陽二模)設i為虛數(shù)單位,復數(shù)z1=1+i,z2=2+i,則復數(shù)z1•z2在復平面內(nèi)對應的點所在的象限為( 。
分析:直接利用多項式的乘法運算展開z1•z2,化為a+bi的形式,即可判斷復數(shù)z1•z2在復平面內(nèi)對應的點所在的象限.
解答:解:因為復數(shù)z1=1+i,z2=2+i,則復數(shù)z1•z2=(1+i)(2+i)=1+3i.她對應的點為(1,3).
復數(shù)z1•z2在復平面內(nèi)對應的點所在的象限為第一象限.
故選A.
點評:本題考查復數(shù)代數(shù)形式的混合運算,復數(shù)的幾何意義,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•洛陽二模)設函數(shù)f(x)的定義域為R,f(x)=
x,0≤x≤1
(
1
2
)x-1,-1≤x<0.
且對任意的x∈R都有f(x+1)=f(x-1),若在區(qū)間[-1,3]上函數(shù)g(x)=f(x)-mx-m恰有四個不同零點,則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•洛陽二模)曲線y=x2ex+2x+1在點P(0,1)處的切線與x軸交點的橫坐標是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•洛陽二模)已知函數(shù)f(x)=(ax2-2x+a)e-x
(I)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設g(x)=-
f′(x)
e-x
-a-2,h(x)=
1
2
x2-2x-lnx
,若x>l時總有g(shù)(x)<h(x),求實數(shù)c范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•洛陽二模)從8名女生,4名男生中選出3名學生組成課外小組,如果按性別比例分層抽樣,則不同的抽取方法種數(shù)為
112
112
. (用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•洛陽二模)設函數(shù)f(x)=|2x+1|-|x-2|.
(1)若關(guān)于x的不等式a≥f(x)存在實數(shù)解,求實數(shù)a的取值范圍;
(2)若?x∈R,f(x)≥-t2-
52
t-1
恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案