正四棱錐S-ABCD中,O為頂點在底面上的射影,P為側棱SD的中點,且SO=OD,則直線BC與平面PAC所成的角等于   .
30°
如圖,以O為原點建立空間直角坐標系Oxyz.

設OD=SO=OA=OB=OC=a,則A(a,0,0),B(0,a,0),C(-a,0,0),
P(0,-,),
=(2a,0,0),=(-a,-,),
=(a,a,0).
設平面PAC的法向量為n,可取n=(0,1,1),
則cos<,n>= ==,
∴<,n>=60°,
∴直線BC與平面PAC所成的角為90°-60°=30°.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點E是棱AB上的動點.

(1)求證:DA1ED1
(2)若直線DA1與平面CED1成角為45o,求的值;
(3)寫出點E到直線D1C距離的最大值及此時點E的位置(結論不要求證明).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,直三棱柱ABCA1B1C1中,D、E分別是AB、BB1的中點,AA1=AC=CB=AB.

(1)證明:BC1∥平面A1CD;
(2)求二面角DA1CE的正弦值..

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,矩形所在的平面和平面互相垂直,等腰梯形中,,=2,,,分別為的中點,為底面的重心.

(1)求證:∥平面;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知向量a=(m,n),b=(p,q),定義a?bmnpq.給出下列四個結論:①a?a=0;②a?bb?a;③(ab)?aa?ab?a;④(a?b)2+(a·b)2=(m2q2)·(n2p2).
其中正確的結論是________.(寫出所有正確結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在三棱柱ABC-A1B1C1中,底面為邊長為1的正三角形,側棱AA1⊥底面ABC,點D在棱BB1上,且BD=1,若AD與平面AA1C1C所成的角為α,則sinα的值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知a=(1,1,1),b=(0,2,-1),c=ma+nb+(4,-4,1).若c與a及b都垂直,則m,n的值分別為    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一個水平放置的平面圖形的斜二測直觀圖是直角梯形 (如圖所示),∠ABC=45°,AB=AD=1,DC⊥BC,則這個平面圖形的面積為(  )
A.+B.2+
C.+D.+

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正三棱柱ABCA1B1C1的棱長都為2,E,F,GAB,AA1,A1C1的中點,則B1F與平面GEF所成角的正弦值為(  ).
A.B.C.D.

查看答案和解析>>

同步練習冊答案