【題目】在《周髀算經(jīng)》中,把圓及其內接正方形稱為圓方圖,把正方形及其內切圓稱為方圓圖.圓方圖和方圓圖在我國古代的設計和建筑領域有著廣泛的應用.山西應縣木塔是我國現(xiàn)存最古老、最高大的純木結構樓閣式建筑,它的正面圖如圖所示.以該木塔底層的邊作方形,會發(fā)現(xiàn)塔的高度正好跟此對角線長度相等.以塔底座的邊作方形.作方圓圖,會發(fā)現(xiàn)方圓的切點正好位于塔身和塔頂?shù)姆纸?/span>.經(jīng)測量發(fā)現(xiàn),木塔底層的邊不少于米,塔頂到點的距離不超過米,則該木塔的高度可能是(參考數(shù)據(jù):)(

A.B.C.D.

【答案】B

【解析】

設該木塔的高度為,根據(jù)題意得出,計算出的取值范圍,進而可求得結果.

設該木塔的高度為,則由圖可知(米),

同時,,

即木塔的高度約在米至米之間,對照各選項,只有B符合.

故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的長軸長為,焦距為2,拋物線的準線經(jīng)過C的左焦點F.

1)求CM的方程;

2)直線l經(jīng)過C的上頂點且lM交于PQ兩點,直線FPFQM分別交于點D(異于點P),E(異于點Q),證明:直線DE的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】配件廠計劃為某項工程生產(chǎn)一種配件,這種配件每天的需求量是200.由于生產(chǎn)這種配件時其他生產(chǎn)設備必須停機,并且每次生產(chǎn)時都需要花費5000元的準備費,所以需要周期性生產(chǎn)這種配件,即在一天內生產(chǎn)出這種配件,以滿足從這天起連續(xù)n天的需求,稱n為生產(chǎn)周期(假設這種配件每天產(chǎn)能可以足夠大).配件的存儲費為每件每天2元(當天生產(chǎn)出的配件不需要支付存儲費,從第二天開始付存儲費).在長期的生產(chǎn)活動中,為使每個生產(chǎn)周期內每天平均的總費用最少,那么生產(chǎn)周期n_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為為參數(shù)),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為

1)寫出曲線C1C2的直角坐標方程;

2)已知P為曲線C2上的動點,過點P作曲線C1的切線,切點為A,求|PA|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在①,②),③)這三個條件中任選一個,補充在下面的問題中,若問題中的k存在,求出k的值;若k不存在,說明理由.已知數(shù)列為等比數(shù)列,,,數(shù)列的首項,其前n項和為,______,是否存在,使得對任意,恒成立?

注:如果選擇多個條件分別解答,按第一個解答計分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱中,,點,分別為棱,的中點.

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線C的頂點是原點O,以x軸為對稱軸,且經(jīng)過點P(1,2).

(1)求拋物線C的方程;

設點A,B在拋物線C上,直線PA,PB分別與y軸交于點M,N,|PM|=|PN|.求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】代表紅球,代表藍球,代表黑球,由加法原理及乘法原理,從1個紅球和1個藍球中取出若干個球的所有取法可由的展開式表示出來,如:“1”表示一個球都不取、“”表示取出一個紅球,而“”用表示把紅球和藍球都取出來.以此類推,下列各式中,其展開式可用來表示從5個有區(qū)別的紅球、5個無區(qū)別的藍球、5個無區(qū)別的黑球中取出若干個球,且所有的藍球都取出或都不取出的所有取法的是( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(甲),是邊長為的等邊三角形,點分別為的中點,將沿折成四棱錐,使,如圖(乙).

1)求證:平面

2)求與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案