已知數(shù)列的前n項(xiàng)和
(1)求數(shù)列的通項(xiàng)公式,并證明是等差數(shù)列;
(2)若,求數(shù)列的前項(xiàng)和.
(1) 通項(xiàng)公式,證明過程詳見試題解析;(2).
【解析】
試題分析:(1) 先根據(jù),求出當(dāng)時(shí)的表達(dá)式;再驗(yàn)證時(shí)是否滿足;證明是等差數(shù)列,即證明是定值即可;(2)先求出的表達(dá)式,再用裂項(xiàng)相消法求數(shù)列前n項(xiàng)和.
試題解析:(1)當(dāng)時(shí), 3分
當(dāng)時(shí),適合上式,所以 4分
因?yàn)楫?dāng)時(shí),為定值,
所以是等差數(shù)列 6分
(2),
所以
所以 10分
考點(diǎn):數(shù)列通項(xiàng)公式的求和、數(shù)列求和.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆安徽蚌埠高二第一學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
平行直線與的距離是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆四川資陽市高二第一學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
三棱錐中,分別是的中點(diǎn),則四邊形是( )
A.菱形 B.矩形 C.梯形 D.正方形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆四川資陽市高二第一學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
甲、乙兩名運(yùn)動(dòng)員在某項(xiàng)測試中的6次成績的莖葉圖如圖所示,,分別表示甲、乙兩名運(yùn)動(dòng)員這項(xiàng)測試成績的平均數(shù),,分別表示甲、乙兩名運(yùn)動(dòng)員這項(xiàng)測試成績的標(biāo)準(zhǔn)差,則有( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆吉林省吉林市高二上學(xué)期期末理數(shù)學(xué)試卷(解析版) 題型:解答題
已知、分別是橢圓的左、右焦點(diǎn).
(1)若是第一象限內(nèi)該橢圓上的一點(diǎn),,求點(diǎn)的坐標(biāo);
(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且為銳角(其
中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆吉林省吉林市高二上學(xué)期期末理數(shù)學(xué)試卷(解析版) 題型:選擇題
已知直線與雙曲線,有如下信息:聯(lián)立方程組:, 消去后得到方程,分類討論:(1)當(dāng)時(shí),該方程恒有一解;(2)當(dāng)時(shí),恒成立。在滿足所提供信息的前提下,雙曲線離心率的取值范圍是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆吉林省吉林市高二上學(xué)期期末理數(shù)學(xué)試卷(解析版) 題型:選擇題
“關(guān)于的不等式對于一切實(shí)數(shù)都成立”是“”的
A.充要條件 B.充分非必要條件
C.必要非充分條件 D.既非充分又非必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆吉林省吉林市高二上學(xué)期期末文數(shù)學(xué)試卷(解析版) 題型:選擇題
若,且,則下列不等式中,恒成立的是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆北京海淀區(qū)高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)的導(dǎo)函數(shù)為,那么“”是“是函數(shù)的一個(gè)極值點(diǎn)”的( )
(A)充分而不必要條件 (B)必要而不充分條件
(C)充要條件 (D)既不充分也不必要條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com