若復(fù)數(shù)z=
1+2i
1+i
,則z在復(fù)平面上對(duì)應(yīng)的點(diǎn)在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點(diǎn):復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求出復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo),則答案可求.
解答: 解:∵z=
1+2i
1+i
=
(1+2i)(1-i)
(1+i)(1-i)
=
3+i
2
=
3
2
+
i
2

∴z在復(fù)平面上對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(
3
2
,
1
2
),位于第一象限.
故選:A.
點(diǎn)評(píng):本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于定義域?yàn)閇0,1]的函數(shù)f(x),如果同時(shí)滿足以下三個(gè)條件:
①對(duì)任意的x∈[0,1],總有f(x)≥0
②f(1)=1
③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2) 成立;則稱函數(shù)f(x)為理想函數(shù).試證明下列三個(gè)命題:
(1)若函數(shù)f(x)為理想函數(shù),則f(0)=0;
(2)函數(shù)f(x)=2x-1(x∈[0,1])是理想函數(shù);
(3)若函數(shù)f(x)是理想函數(shù),假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,則f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+ϕ),(A>0,ω>0,0≤ϕ≤π)的部分圖象如圖所示,則y=f(x)的解析式是f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}共有20項(xiàng),其中前四項(xiàng)的積是
1
128
,末四項(xiàng)的積是512,則這個(gè)等比數(shù)列的各項(xiàng)乘積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3tanx的周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1-k)x+
m
x
+2,其中k,m∈R,且m≠0.
(1)求函數(shù)f(x)的定義域;
(2)k如何取值時(shí),函數(shù)f(x)存在零點(diǎn),并求出零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若角θ的終邊過點(diǎn)P(-4t,3t)(t≠0),則2sinθ+cosθ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三次函數(shù)f(x)=ax3+x在x∈(-∞,+∞)內(nèi)是增函數(shù),則( 。
A、a>0
B、a<0
C、a=1
D、a=
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實(shí)數(shù)m=
2
3
是直線l1:x+2y-4=0與l2:mx+(2-m)y-1=0平行的
 
條件.(充要條件或充分不必要條件或必要不充分條件或既不充分又不必要條件).

查看答案和解析>>

同步練習(xí)冊(cè)答案