【題目】平面直角坐標系xoy中,直線l的參數(shù)方程是 (t為參數(shù)),以射線ox為極軸建立極坐標系,曲線C的極坐標方程是 2sin2θ=1.
(1)求曲線C的直角坐標方程;
(2)求直線l與曲線C相交所得的弦AB的長.

【答案】
(1)解:曲線C的極坐標方程是 2sin2θ=1,把x=ρcosθ,y=ρsinθ代入可得: =1
(2)解:直線l的參數(shù)方程是 (t為參數(shù)),即 ,代入橢圓方程可得: ﹣2=0,

∴t1+t2= ,t1t2=﹣ ,∴|AB|=|t1﹣t2|= = =


【解析】(1)曲線C的極坐標方程是 2sin2θ=1,把x=ρcosθ,y=ρsinθ代入可得直角坐標方程..(2)直線l的參數(shù)方程是 (t為參數(shù)),即 ,代入橢圓方程可得: ﹣2=0,利用|AB|=|t1﹣t2|= 即可得出.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)要求求值:
(1)用輾轉(zhuǎn)相除法求123和48的最大公約數(shù).
(2)用更相減損術求80和36的最大公約數(shù).
(3)把89化為二進制數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a1= ,an+1= (n∈N*).
(Ⅰ)求證:數(shù)列{ }是等差數(shù)列,并求{an}的通項公式;
(Ⅱ)設bn+an=l(n∈N*),Sn=b1b2+b2b3+…+bnbn+1 , 試比較an與8Sn的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子里裝有三張卡片,分別標記有數(shù)字1,2,3,這三張卡片除標記的數(shù)字外完全相同.隨機有放回地抽取3,每次抽取1,將抽取的卡片上的數(shù)字依次記為a,b,c.求:

(1)“抽取的卡片上的數(shù)字滿足abc”的概率;

(2)“抽取的卡片上的數(shù)字ab,c不完全相同”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:,,,,.

(1).求圖中的值; 并根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;

(2).若這100名學生語文成績某些分數(shù)段的人數(shù)()與數(shù)學成績相應分數(shù)段的人數(shù)()之比如上右表所示,求數(shù)學成績在之外的人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 在橢圓C: 上,F(xiàn)為右焦點,PF⊥垂直于x軸,A,B,C,D為橢圓上的四個動點,且AC,BD交于原點O.
(1)求橢圓C的方程;
(2)判斷直線l: 與橢圓的位置關系;
(3)設A(x1 , y1),B(x2 , y2)滿足 = ,判斷kAB+kBC的值是否為定值,若是,請求出此定值,并求出四邊形ABCD面積的最大值,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,從參加環(huán)保知識競賽的學生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:

(1)這一組的頻數(shù)、頻率分別是多少?

(2)估計這次環(huán)保知識競賽的及格率(60分及以上為及格).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)設.

①若,曲線處的切線過點,求的值;

②若,求在區(qū)間上的最大值.

(2)設, 兩處取得極值,求證: 不同時成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產(chǎn)甲,乙兩種產(chǎn)品均需用兩種原料,已知生產(chǎn)1噸每種產(chǎn)品需用原料及每天原料的可用限額如下表所示,如果生產(chǎn)1噸甲,乙產(chǎn)品可獲利潤分別為3萬元、4萬元,則該企業(yè)可獲得最大利潤為__________萬元.

原料限額

A(噸)

3

2

12

B(噸)

1

2

8

查看答案和解析>>

同步練習冊答案