【題目】如圖,在四棱錐中,已知底面為矩形,平面,點為棱的中點,求證:
(1)平面;
(2)平面平面.
【答案】(1)詳見解析(2)詳見解析
【解析】
試題(1)證明線面平行,一般利用線面平行判定定理進行論證,即從線線平行出發(fā),而線線平行的證明一般從平面幾何條件尋求,本題利用中位線性質(zhì)得.(2)面面垂直的證明,一般利用線面垂直給予證明,即需證明平面.而線面垂直的證明,需多次利用線面垂直的判定及性質(zhì)定理進行轉(zhuǎn)化論證.
試題解析:(1)連接與相交于點,連結(jié).
因為四邊形為矩形,所以為中點.
因為為棱中點,所以.
因為平面,平面,
所以直線平面.
(2)因為平面,平面,所以.
因為四邊形為矩形,所以.
因為,平面,所以平面.
因為平面,所以平面平面.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+c(a>0),且f(1).
(1)求證:函數(shù)f(x)有兩個不同的零點;
(2)設(shè)x1,x2是函數(shù)f(x)的兩個不同的零點,求|x1﹣x2|的取值范圍;
(3)求證:函數(shù)f(x)在區(qū)間(0,2)內(nèi)至少有一個零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行漢字聽寫比賽,為了了解本次比賽成績情況,從得分不低于50分的試卷中隨機抽取100名學(xué)生的成績(得分均為整數(shù),滿分100分)進行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:
(1)求的值;
(2)若從成績較好的第3、4、5組中按分層抽樣的方法抽取6人參加市漢字聽寫比賽,并從中選出2人做種子選手,求2人中至少有1人是第4組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不共線向量,滿足||=3,||=2,(23)(2)=20.
(1)求;
(2)是否存在實數(shù)λ,使λ與2共線?
(3)若(k2)⊥(),求實數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個長方體的容器中,里面裝有少量的水,現(xiàn)在將容器繞著其底部的一條棱傾斜.
(1)在傾斜的過程中,水面的形狀不斷變化,可能是矩形,也可能變成不是矩形的平行四邊形,對嗎?
(2)在傾斜的過程中,水的形狀也不斷變化,可以是棱柱,也可能變?yōu)槔馀_或棱錐,對嗎?
(3)如果傾斜時,不是繞著底部的一條棱,而是繞著其底面的一個頂點,上面的第(1)問和第(2)問對不對?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點P與兩個定點O(0,0),A(3,0)的距離的比值為2,點P的軌跡為曲線C.
(1)求曲線C的軌跡方程
(2)過點(﹣1,0)作直線與曲線C交于A,B兩點,設(shè)點M坐標(biāo)為(4,0),求△ABM面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中
(1)在等差數(shù)列中,是的充要條件;
(2)已知等比數(shù)列為遞增數(shù)列,且公比為,若,則當(dāng)且僅當(dāng);
(3)若數(shù)列為遞增數(shù)列,則的取值范圍是;
(4)已知數(shù)列滿足,則數(shù)列的通項公式為
(5)若是等比數(shù)列的前項的和,且;(其中、是非零常數(shù),),則A+B為零.
其中正確命題是_________(只需寫出序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com