(本題滿分14分)
如圖,在正方體ABCD—A1B1C1D1中,M、N、G
分別是A1A,D1C,AD的中點.求證:(Ⅰ)MN//平面ABCD;(Ⅱ)MN⊥平面B1BG.
證明:(1)取CD的中點記為E,連NE,AE.
由N,E分別為CD1與CD的中點可得
NE∥D1D且NE=D1D, ………………………………2分
又AM∥D1D且AM=D1D………………………………4分
所以AM∥EN且AM=EN,即四邊形AMNE為平行四邊形
所以MN∥AE,  ………………………………6分
又AE面ABCD,所以MN∥面ABCD……8分
(2)由AG=DE ,,DA=AB
可得全等……………………………10分
所以,      ……………………………………………11分
,所以
所以,                     ………………………………………………12分
,所以,  ……………………………………………………13分
又MN∥AE,所以MN⊥平面B1BG ……………………………………………14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共14分) 已知四棱錐的底面為直角梯形,,底面,且,,的中點。
(Ⅰ)證明:面;
(Ⅱ)求所成角的余弦值;
(Ⅲ)求面與面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,直平行六面體ABCD-A1B1C1D1的高為3,
底面是邊長為4, 且∠BAD=60°的菱形,AC∩
BD=O,A1C1∩B1D1=O1,E是線段AO1上一點.
(Ⅰ)求點A到平面O1BC的距離;
(Ⅱ)當(dāng)AE為何值時,二面角E-BC-D的大小為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
正△的邊長為4,邊上的高,分別是邊的中點,現(xiàn)將△沿翻折成直二面角

(1)試判斷直線與平面的位置關(guān)系,并說明理由;
(2)求二面角的余弦值;
(3)在線段上是否存在一點,使?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D為AC的中點.
(Ⅰ)求證:AB1//面BDC1
  (Ⅱ)求二面角C1—BD—C的余弦值;
(Ⅲ)在側(cè)棱AA­1上是否存在點P,使得
CP⊥面BDC1?并證明你的結(jié)論.


 
 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共14分)在四棱錐中,底面是矩形,平面,. 以的中點為球心、為直徑的球面交于點,交于點.
(1)求證:平面⊥平面;      
(2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分12分)
如圖所示,在棱長為的正方體ABCD—A1B1C1D1中,E、F、H分別是棱BB1、CC1、DD1的中點。


 
(Ⅰ)求證:BH//平面A1EFD1

(Ⅱ)求直線AF與平面A1EFD1所成的角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
如圖,直三棱柱ABC—A1B1C1的底面是等腰直角三角形,∠A1C1B1=90°,A1C1=1,AA1=,D是線段A1B的中點.                                       
(1)證明:面⊥平面A1B1BA;
(2)證明:;
(3)求棱柱ABC—A1B1C1被平面分成兩部分
的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分l4分)如圖,邊長為的正方體中,的中點,在線段上,且
(1)求異面直線所成角的余弦值;
(2)證明:;
(3)求點到面的距離.

查看答案和解析>>

同步練習(xí)冊答案