【題目】某生產(chǎn)甲,乙兩種產(chǎn)品,生產(chǎn)這兩種產(chǎn)品每噸需要的煤,電以及每噸產(chǎn)品的產(chǎn)值如表所示.若每天配給該廠的煤至多56噸,供電至多45千瓦,問該廠如何安排生產(chǎn),使該廠日產(chǎn)值最大?
用煤/噸 | 用電/千瓦 | 產(chǎn)值/萬元 | |
甲種產(chǎn)品 | 7 | 2 | 8 |
乙種產(chǎn)品 | 3 | 5 | 11 |
【答案】解:設(shè)每天生產(chǎn)甲種產(chǎn)品x噸,乙種產(chǎn)品y噸.
依題意可得線性約束條件
目標函數(shù)為z=8x+11y,
作出線性約束條件所表示的平面區(qū)域如圖所示
將z=8x+11y變形為y=﹣ x+
當直線y=﹣ x+
在縱軸上的截距 達到最大值時,
即直線y=﹣ x+ 經(jīng)過點M時,z也達到最大值.
由 得M點的坐標為(5,7)
所以當x=5,y=7時,zmax=5×8+7×11=117
因此,該廠每天生產(chǎn)甲種產(chǎn)品5噸,乙種產(chǎn)品7噸,才能使該廠日產(chǎn)值最大,最大的產(chǎn)值是117萬元.
【解析】求得線性約束條件 ,目標函數(shù)為z=8x+11y,作出可行域,根據(jù)圖象即可求得結(jié)論.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線y2=4x的焦點為F,過點F的直線交拋物線于A,B兩點.
(1)若 =3 ,求直線AB的斜率;
(2)設(shè)點M在線段AB上運動,原點O關(guān)于點M的對稱點為C,求四邊形OACB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)= ,(a>0,且a≠1).
(1)求f(x)的定義域.
(2)證明f(x)為奇函數(shù).
(3)求使f(x)>0成立的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2x的定義域是[0,3],設(shè)g(x)=f(2x)﹣f(x+2).
(1)求g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}是一個等差數(shù)列,且a2=1,a5=﹣5.
(Ⅰ)求{an}的通項an;
(Ⅱ)求{an}前n項和Sn的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017北京西城區(qū)5月模擬】某大學為調(diào)研學生在,兩家餐廳用餐的滿意度,從在,兩家餐廳都用過餐的學生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.
整理評分數(shù)據(jù),將分數(shù)以10為組距分成6組:,,,,,,得到餐廳分數(shù)的頻率分布直方圖,和餐廳分數(shù)的頻數(shù)分布表:
定義學生對餐廳評價的“滿意度指數(shù)”如下:
分數(shù) | |||
滿意度指數(shù) |
(Ⅰ)在抽樣的100人中,求對餐廳評價“滿意度指數(shù)”為0的人數(shù);
(Ⅱ)從該校在,兩家餐廳都用過餐的學生中隨機抽取1人進行調(diào)查,試估計其對餐廳評價的“滿意度指數(shù)”比對餐廳評價的“滿意度指數(shù)”高的概率;
(Ⅲ)如果從,兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,點P到兩點(0,﹣),(0,)的距離之和等于4,設(shè)點P的軌跡為C,直線y=kx+1與C交于A,B兩點.
(1)寫出C的方程;
(2)若⊥ , 求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com