【題目】已知四棱錐的底面是正方形,底面.

(1)求證:直線平面

(2)當(dāng)的值為多少時(shí),二面角的大小為

【答案】(1)證明見解析;(2)1.

【解析】分析(1)由線面垂直的性質(zhì)可得,由正方形的性質(zhì)可得,由線面垂直的判定定理可證平面;(2)設(shè),以為原點(diǎn),,所在直線分別為,軸建立空間直角坐標(biāo)系,設(shè),分別利用向量垂直數(shù)量積為零列方程組,求出平面的法向量與平面的法向量,由空間向量夾角余弦公式列方程可得結(jié)果.

詳解(1)證明:∵平面,平面,∴,

∵四邊形是正方形,∴,,∴平面.

(2)解:設(shè),以為原點(diǎn),,所在直線分別為,軸建立空間直角坐標(biāo)系,為計(jì)算方便,不妨設(shè),則,,,

,,.

設(shè)平面的法向量為,則,

,則,,∴.

設(shè)平面的法向量為,,

,又,則,∴.

要使二面角的大小為,必有,

,∴,∴.

即當(dāng)時(shí),二面角的大小為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用收集到的6組數(shù)據(jù)對(duì)制作成如圖所示的散點(diǎn)圖(點(diǎn)旁的數(shù)據(jù)為該點(diǎn)坐標(biāo)),并由最小二乘法計(jì)算得到回歸直線的方程:,相關(guān)系數(shù)為,相關(guān)指數(shù)為;經(jīng)過殘差分析確定點(diǎn)為“離群點(diǎn)”(對(duì)應(yīng)殘差過大的點(diǎn)),把它去掉后,再用剩下的5組數(shù)據(jù)計(jì)算得到回歸直線的方程:,相關(guān)系數(shù)為,相關(guān)指數(shù)為.則以下結(jié)論中,不正確的是( )

A. B. ,

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為梯形,平面,,

中點(diǎn).

(1)求證:平面平面

(2)線段上是否存在一點(diǎn),使平面?若存在,找出具體位置,并進(jìn)行證明:若不存在,請(qǐng)分析說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線是拋物線的準(zhǔn)線,直線,與拋物線沒有公共點(diǎn),動(dòng)點(diǎn)在拋物線,點(diǎn)到直線的距離之和的最小值等于2.

求拋物線的方程

點(diǎn)在直線上運(yùn)動(dòng),過點(diǎn)做拋物線的兩條切線,切點(diǎn)分別為,在平面內(nèi)是否存在定點(diǎn),使得恒成立?若存在,請(qǐng)求出定點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某市日至日的空氣質(zhì)量指數(shù)趨勢(shì)圖,某人隨機(jī)選擇日至日中的某一天到達(dá)該市,并停留天.

(1)求此人到達(dá)當(dāng)日空氣質(zhì)量指數(shù)大于的概率;

(2)設(shè)是此人停留期間空氣質(zhì)量指數(shù)小于的天數(shù),求的分布列與數(shù)學(xué)期望;

(3)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+ax2
(1)討論f(x)的單調(diào)性;
(2)設(shè)a>1,若對(duì)任意x1 , x2∈(0,+∞),恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCDABCD的棱長為a,連接AC,AD,AB,BD,BC,CD,得到一個(gè)三棱錐.求:

(1)三棱錐ABCD的表面積與正方體表面積的比值;

(2)三棱錐ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一張坐標(biāo)紙上已作出圓及點(diǎn),折疊此紙片,使與圓周上某點(diǎn)重合,每次折疊都會(huì)留下折痕,設(shè)折痕與直線的交點(diǎn)為,令點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)若直線與軌跡交于、兩點(diǎn),且直線與以為直徑的圓相切,若,求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)若曲線相交于,兩點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案