【題目】已知雙曲線C: =1(a>0,b>0)的離心率為 ,實軸長為2,直線l:x﹣y+m=0與雙曲線C交于不同的兩點A,B,
(1)求雙曲線C的方程;
(2)若線段AB的中點在圓x2+y2=5上,求m的值;
(3)若線段AB的長度為4 ,求直線l的方程.

【答案】
(1)解:由題意,得 = ,2a=2,又因為c2=a2+b2

解得a=1,c= ,

∴b2=c2﹣a2=2

∴所求雙曲線C的方程為x2 =1


(2)解:設(shè)A、B兩點的坐標分別為(x1,y1),(x2,y2),線段AB的中點為M(x0,y0),

得x2﹣2mx﹣m2﹣2=0,判別式△>0,

∴x0= =m,y0=x0+m=2m,

∵點M(x0,y0)在圓x2+y2=5上,

∴m2+(2m)2=5,

∴m=±1


(3)解:由 = = = = =4

解得m=±2

所以直線l的方程為x﹣y+2=0或x﹣y﹣2=0


【解析】(1)根據(jù)雙曲線的離心率和和實軸長即可求出a,b的值,問題得以解決,(2)設(shè)A、B兩點的坐標分別為(x1 , y1),(x2 , y2),線段AB的中點為M(x0 , y0),根據(jù)點M(x0 , y0)在圓x2+y2=5上,即可求出m的值,(3)根據(jù)弦長公式即可求出m的值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)事件A表示“關(guān)于x的一元二次方程x2+ax+b2=0有實根”,其中a,b為實常數(shù). (Ⅰ)若a為區(qū)間[0,5]上的整數(shù)值隨機數(shù),b為區(qū)間[0,2]上的整數(shù)值隨機數(shù),求事件A發(fā)生的概率;
(Ⅱ)若a為區(qū)間[0,5]上的均勻隨機數(shù),b為區(qū)間[0,2]上的均勻隨機數(shù),求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠36名工人年齡數(shù)據(jù)如圖:

工人編號

年齡

工人編號

年齡

工人編號

年齡

工人編號

年齡

1
2
3
4
5
6
7
8
9

40
44
40
41
33
40
45
42
43

10
11
12
13
14
15
16
17
18

36
31
38
39
43
45
39
38
36

19
20
21
22
23
24
25
26
27

27
43
41
37
34
42
37
44
42

28
29
30
31
32
33
34
35
36

34
39
43
38
42
53
37
49
39


(1)用系統(tǒng)抽樣法從36名工人中抽取容量為9的樣本,且在第一分段里用隨機抽樣法抽到的年齡數(shù)據(jù)為44,列出樣本的年齡數(shù)據(jù);
(2)計算(1)中樣本的均值 和方差s2;
(3)36名工人中年齡在 ﹣s和 +s之間有多少人?所占百分比是多少(精確到0.01%)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F是雙曲線 =1(a>0,b>0)的左焦點,E是該雙曲線的右頂點,過點F且垂直于x軸的直線與雙曲線交于A、B兩點,若△ABE是銳角三角形,則該雙曲線的離心率e的取值范圍為(
A.(1,2)
B.(2,1+
C.( ,1)
D.(1+ ,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1、F2是橢圓 =1的焦點,點P在橢圓上,若∠F1PF2= ,則△F1PF2的面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù) , 是其函數(shù)圖象的一條對稱軸. (Ⅰ)求ω的值;
(Ⅱ)若f(x)的定義域為 ,值域為[1,5],求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合A={x|a+1≤x≤2a+1},B={x|4≤x≤5}.
(I)若a=2,求A∪B,R(A∪B);
(II)若A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線y=- x+5的傾斜角是直線l的傾斜角的大小的5倍,分別求滿足下列條件的直線l的方程.
(1)過點P(3,-4);
(2)在x軸上截距為-2;
(3)在y軸上截距為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩曲線f(x)= x2+ax與g(x)=2a2lnx+b有公共點,且在該點處有相同的切線,則a∈(0,+∞)時,實數(shù)b的最大值是(
A.e
B.2e
C.e
D. e

查看答案和解析>>

同步練習冊答案