【題目】下列說(shuō)法中正確的有(  )

①函數(shù)y的定義域?yàn)?/span>{x|x1};

②函數(shù)yx2x+1(0,+)上是增函數(shù);

③函數(shù)f(x)=x3+1(xR),若f(a)=2,則f(-a)=-2;

④已知f(x)R上的增函數(shù),若ab>0,則有f(a)+f(b)>f(-a)+f(-b).

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

【答案】C

【解析】①函數(shù)y中,有,得定義域?yàn)?/span>,故不正確;

②函數(shù)yx2x1中,拋物線開口向上,對(duì)稱軸為,所有函數(shù)的增區(qū)間為.

(0,+∞),函數(shù)yx2x1(0,+∞)上是增函數(shù)正確;

③函數(shù)f(x)x31(xR),不滿足奇函數(shù),所以若,,則, ③不正確.

④∵f(x)R上是增函數(shù),且,

,

因此④是正確的。

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a是實(shí)數(shù),函數(shù)f(x)= (x-a).

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)設(shè)g(a)為f(x)在區(qū)間[0,2]上的最小值.

①寫出g(a)的表達(dá)式;

②求a的取值范圍,使得-6≤g(a)≤-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,焦點(diǎn)到短軸端點(diǎn)的距離為2,離心率為.

(Ⅰ)求該橢圓的方程;

(Ⅱ)若直線與橢圓交于 兩點(diǎn)且,是否存在以原點(diǎn)為圓心的定圓與直線相切?若存在求出定圓的方程;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cos xsin 2x,下列結(jié)論中正確的是________(填入正確結(jié)論的序號(hào)).

①y=f(x)的圖象關(guān)于點(diǎn)(2π,0)中心對(duì)稱;

②y=f(x)的圖象關(guān)于直線x=π對(duì)稱;

③f(x)的最大值為;

④f(x)既是奇函數(shù),又是周期函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店銷售10臺(tái)A型和20臺(tái)B型電腦的利潤(rùn)為4000元,銷售20臺(tái)A型和10臺(tái)B型電腦的利潤(rùn)為3500元.

(1)求每臺(tái)A型電腦和B型電腦的銷售利潤(rùn);

(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過(guò)A型電腦的2倍。設(shè)購(gòu)進(jìn)A掀電腦x臺(tái),這100臺(tái)電腦的銷售總利潤(rùn)為y元。

①求yx的關(guān)系式;

②該商店購(gòu)進(jìn)A型、B型各多少臺(tái),才能使銷售利潤(rùn)最大?

(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下調(diào)m(0<m<100)元,且限定商店最多購(gòu)進(jìn)A型電腦70臺(tái)。若商店保持兩種電腦的售價(jià)不變,請(qǐng)你以上信息及(2)中的條件,設(shè)計(jì)出使這100臺(tái)電腦銷售總利潤(rùn)最大的進(jìn)貨方案。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從高二年級(jí)學(xué)生中隨機(jī)抽取60名學(xué)生,將其期中考試的政治成績(jī)(均為整數(shù))分成六段: , , ,…后得到如下頻率分布直方圖.

(1)根據(jù)頻率分布直方圖,估計(jì)該校高二年級(jí)學(xué)生期中考試政治成績(jī)的平均分、眾數(shù)、中位數(shù);(小數(shù)點(diǎn)后保留一位有效數(shù)字)

(2)用分層抽樣的方法在各分?jǐn)?shù)段的學(xué)生中抽取一個(gè)容量為20的樣本,則各分?jǐn)?shù)段抽取的人數(shù)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓1(a>b>0)的離心率e,連結(jié)橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4.

(1)求橢圓的方程;

(2)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A,B.已知點(diǎn)A的坐標(biāo)為(a0).若|AB|,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)axx2xlna,a>1.

(1)求證:函數(shù)f(x)(0,+∞)上單調(diào)遞增;

(2)對(duì)任意x1,x2∈[1,1],|f(x1)f(x2)|≤e1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用0,12, 3,4,5這六個(gè)數(shù)字:

1)能組成多少個(gè)無(wú)重復(fù)數(shù)字的四位偶數(shù)?

2)能組成多少個(gè)無(wú)重復(fù)數(shù)字且為5的倍數(shù)的五位數(shù)?

3)能組成多少個(gè)無(wú)重復(fù)數(shù)字且比1325大的四位數(shù)?

查看答案和解析>>

同步練習(xí)冊(cè)答案