(07年上海卷文)(14分)
我們把由半橢圓 與半橢圓 合成的曲線稱作“果圓”,其中,,. 如圖,設(shè)點,,是相應(yīng)橢圓的焦點,,和,是“果圓” 與,軸的交點,是線段的中點.
(1)若是邊長為1的等邊三角形,求該“果圓”的方程;
(2)設(shè)是“果圓”的半橢圓上任意一點.求證:當(dāng)取得最小值時,在點或處;
(3)若是“果圓”上任意一點,求取得最小值時點的橫坐標(biāo).
科目:高中數(shù)學(xué) 來源: 題型:
(07年上海卷文)(14分)如果有窮數(shù)列(為正整數(shù))滿足條件,,…,,即(),我們稱其為“對稱數(shù)列”.
例如,數(shù)列與數(shù)列都是“對稱數(shù)列”.
(1)設(shè)是7項的“對稱數(shù)列”,其中是等差數(shù)列,且,.依次寫出的每一項;
(2)設(shè)是項的“對稱數(shù)列”,其中是首項為,公比為的等比數(shù)列,求各項的和;
(3)設(shè)是項的“對稱數(shù)列”,其中是首項為,公差為的等差數(shù)列.求前項的和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com