(2013•四川)在平行四邊形ABCD中,對(duì)角線(xiàn)AC與BD交于點(diǎn)O,
AB
+
AD
AO
,則λ=
2
2
分析:依題意,
AB
+
AD
=
AC
,而
AC
=2
AO
,從而可得答案.
解答:解:∵四邊形ABCD為平行四邊形,對(duì)角線(xiàn)AC與BD交于點(diǎn)O,
AB
+
AD
=
AC

又O為AC的中點(diǎn),
AC
=2
AO

AB
+
AD
=2
AO
,
AB
+
AD
AO
,
∴λ=2.
故答案為:2.
點(diǎn)評(píng):本題考查平面向量的基本定理及其意義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•四川)在△ABC中,角A、B、C的對(duì)邊分別a、b、c,且2cos2
A-B
2
cosB-sin(A-B)sinB+cos(A+C)=-
3
5

(1)求cosA的值;
(2)若a=4
2
,b=5
,求向量
BA
BC
方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•四川)在平面直角坐標(biāo)系內(nèi),到點(diǎn)A(1,2),B(1,5),C(3,6),D(7,-1)的距離之和最小的點(diǎn)的坐標(biāo)是
(2,4)
(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•四川)在等比數(shù)列{an}中,a2-a1=2,且2a2為3a1和a3的等差中項(xiàng),求數(shù)列{an}的首項(xiàng)、公比及前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•四川)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且cos(A-B)cosB-sin(A-B)sin(A+c)=-
3
5

(Ⅰ)求sinA的值;
(Ⅱ)若a=4
2
,b=5,求向量
BA
BC
方向上的投影.

查看答案和解析>>

同步練習(xí)冊(cè)答案