(1)求橢圓C的方程;
(2)已知A為橢圓C的左頂點(diǎn),直線(xiàn)l過(guò)右焦點(diǎn)F2與橢圓C交于M、N兩點(diǎn),若AM、AN的斜率k1,k2滿(mǎn)足k1+k2=,求直線(xiàn)l的方程;
(3)已知P是橢圓C上位于第一象限內(nèi)的點(diǎn),△PF1F2的重心為G,內(nèi)心為I,求證:IG∥F1F2.
解:(1)由題意橢圓的離心率e=,∴=.∴a=2c.∴b2=a2-c2=3c2.
∴橢圓方程為+=1.
又點(diǎn)(1,)在橢圓上,∴+=1.∴c2=1.∴橢圓的方程為+=1.
(2)若直線(xiàn)l斜率不存在,顯然k1+k2=0不合題意;則直線(xiàn)l的斜率存在.
設(shè)直線(xiàn)l為y=k(x-1),直線(xiàn)l和橢圓交于M(x1,y1),N(x2,y2).
將y=k(x-1)代入3x2+4y2=12中,得到(3+4k2)x2-8k2x+4k2-12=0.
依題意,Δ=9k2-9>0得k>1或k<-1.由韋達(dá)定理可知
又kAM+kAN=+=k(+)=k[2-3(+)],
而+===,
從而kAM+kAN=k(2-3·)==.
求得k=2,符合k>1.故所求直線(xiàn)MN的方程為y=2(x-1).
(3)證明:設(shè)P點(diǎn)坐標(biāo)為(x0,y0)(y0>0),而G為△PF1F2的重心,為G(,).
設(shè)△PF1F2的內(nèi)切圓半徑為r,則
=|F1F2|·|y0|=(|PF1|+|PF2|+|F1F2|)·r,
于是·2c·|y0|=(2a+2c)·r.
又a=2,c=1,y0>0,則r=y0,從而I點(diǎn)縱坐標(biāo),從而IG∥F1F2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題
設(shè)橢圓C:+=1(a>b>0)過(guò)點(diǎn)(0,4),離心率為.
(1)求C的方程;
(2)求過(guò)點(diǎn)(3,0)且斜率為的直線(xiàn)被C所截線(xiàn)段的中點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:選擇題
設(shè)橢圓C:+=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,P是C上的點(diǎn),PF2⊥F1F2,∠PF1F2=30°,則C的離心率為( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆遼寧省丹東市高二下學(xué)期期初摸底文科數(shù)學(xué)卷(解析版) 題型:解答題
已知橢圓C:=1(a>b>0)的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線(xiàn)l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線(xiàn)l的距離為,求△AOB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求橢圓C的方程;
(2)已知A為橢圓C的左頂點(diǎn),直線(xiàn)l過(guò)右焦點(diǎn)F2與橢圓C交于M、N兩點(diǎn).若AM,AN的斜率k1,k2滿(mǎn)足k1+k2=,求直線(xiàn)l的方程;
(3)已知P是橢圓C上位于第一象限內(nèi)的點(diǎn),△PF1F2的重心為G,內(nèi)心為I,求證:GI∥F1F2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com