設(shè)F1,F(xiàn)2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),若在直線x=
a2
c
上存在點(diǎn)P,使線段PF1的中垂線過點(diǎn)F2,則橢圓的離心率的取值范圍是
3
3
,1)
3
3
,1)
分析:設(shè)準(zhǔn)線與x軸的交點(diǎn)為Q,連結(jié)PF2,根據(jù)平面幾何的知識可得|PF2|=|F1F2|=2c且|PF2|≥|QF2|,由此建立關(guān)于a、c的不等關(guān)系,化簡整理得到關(guān)于離心率e的一元二次不等式,解之即可得到橢圓離心率e的取值范圍.
解答:解:設(shè)準(zhǔn)線與x軸的交點(diǎn)為Q,連結(jié)PF2,
∵PF1的中垂線過點(diǎn)F2,
∴|F1F2|=|PF2|,可得|PF2|=2c,
∵|QF2|=
a2
c
-c,且|PF2|≥|QF2|,
∴2c≥
a2
c
-c,兩邊都除以a得2•
c
a
a
c
-
c
a
,
即2e≥
1
e
-e,整理得3e2≥1,解得e
3
3
,
結(jié)合橢圓的離心率e∈(0,1),得
3
3
≤e<1.
故答案為:(
3
3
,1).
點(diǎn)評:本題給出橢圓滿足的條件,求橢圓離心率的范圍.著重考查了橢圓的標(biāo)準(zhǔn)方程與簡單幾何性質(zhì)、線段的垂直平分線性質(zhì)和不等式的解法等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn),若橢圓C上的一點(diǎn)A(1,
3
2
)到F1,F(xiàn)2的距離之和為4.
(1)求橢圓方程;
(2)若M,N是橢圓C上兩個(gè)不同的點(diǎn),線段MN的垂直平分線與x軸交于點(diǎn)P,求證:|
OP
|<
1
2
;
(3)若M,N是橢圓C上兩個(gè)不同的點(diǎn),Q是橢圓C上不同于M,N的任意一點(diǎn),若直線QM,QN的斜率分別為KQM•KQN.問:“點(diǎn)M,N關(guān)于原點(diǎn)對稱”是KQM•KQN=-
3
4
的什么條件?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•南匯區(qū)二模)設(shè)F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),其右焦點(diǎn)是直線y=x-1與x軸的交點(diǎn),短軸的長是焦距的2倍.
(1)求橢圓的方程;
(2)若P是該橢圓上的一個(gè)動(dòng)點(diǎn),求
PF1
PF2
的最大值和最小值;
(3)是否存在過點(diǎn)A(5,0)的直線l與橢圓交于不同的兩點(diǎn)C、D,使得|F2C|=|F2D|?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•安徽)設(shè)橢圓E:
x2
a2
+
y2
1-a2
=1
的焦點(diǎn)在x軸上
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設(shè)F1,F(xiàn)2分別是橢圓E的左、右焦點(diǎn),P為橢圓E上第一象限內(nèi)的點(diǎn),直線F2P交y軸于點(diǎn)Q,并且F1P⊥F1Q,證明:當(dāng)a變化時(shí),點(diǎn)P在某定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•南匯區(qū)二模)設(shè)F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),其右焦點(diǎn)是直線y=x-1與x軸的交點(diǎn),短軸的長是焦距的2倍.
(1)求橢圓的方程;
(2)若P是該橢圓上的一個(gè)動(dòng)點(diǎn),求
PF1
PF2
的最大值和最小值;
(3)若P是該橢圓上的一個(gè)動(dòng)點(diǎn),點(diǎn)A(5,0),求線段AP中點(diǎn)M的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案