【題目】把半橢圓與圓弧合成的曲線稱作“曲圓”,其中F為半橢圓的右焦點,A是圓弧與x軸的交點,過點F的直線交“曲圓”于P,Q兩點,則的周長取值范圍為______
【答案】
【解析】
首先判斷直線PQ的斜率不能為0,設直線PQ的傾斜角為,,求得F,A的坐標,以及圓的圓心和半徑,求得直線PQ經(jīng)過圓與y軸的交點B,C的傾斜角,分別討論當時,當,時,當時,P,Q的位置,結(jié)合橢圓的定義和圓的定義和等腰三角形的性質(zhì),可得的周長的范圍.
解:顯然直線PQ的斜率不能為0,設直線PQ的傾斜角為,,
由半橢圓方程為可得,
圓弧方程為:的圓心為,半徑為2,
且恰為橢圓的左焦點,,
與y軸的兩個交點為,,
當直線PQ經(jīng)過B時,,即有;
當直線PQ經(jīng)過C時,,即有.
當時,Q、P分別在圓。、
半橢圓上,
為腰為2的等腰三角形,則,
的周長;
當時,P、Q分別在圓。、
半橢圓上,
為腰為2的等腰三角形,且,
的周長;
當時,P、Q在半橢圓上,
的周長.
綜上可得,的周長取值范圍為.
故答案為:.
科目:高中數(shù)學 來源: 題型:
【題目】設有下列四個命題:
:若,則;
:若,則;
:“”是“為奇函數(shù)”的充要條件;
:“等比數(shù)列中,”是“等比數(shù)列是遞減數(shù)列”的充要條件.
其中,真命題的是
A. ,B. ,C. ,D. ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某次數(shù)學知識比賽中共有6個不同的題目,每位同學從中隨機抽取3個題目進行作答,已知這6個題目中,甲只能正確作答其中的4個,而乙正確作答每個題目的概率均為,且甲、乙兩位同學對每個題目的作答都是相互獨立、互不影響的.
(1)求甲、乙兩位同學總共正確作答3個題目的概率;
(2)若甲、乙兩位同學答對題目個數(shù)分別是,,由于甲所在班級少一名學生參賽,故甲答對一題得15分,乙答對一題得10分,求甲乙兩人得分之和的期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平行四邊形中,,,過點作的垂線,交的延長線于點,.連結(jié),交于點,如圖1,將沿折起,使得點到達點的位置,如圖2.
(1)證明:平面平面;
(2)若為的中點,為的中點,且平面平面,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面四邊形中,等邊三角形,,以為折痕將折起,使得平面平面.
(1)設為的中點,求證:平面;
(2)若與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學一位高三班主任對本班50名學生學習積極性和對待班級工作的態(tài)度進行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如表所示:
積極參加班級工作 | 不積極參加班級工作 | 合計 | |
學習積極性高 | 18 | 7 | 25 |
學習積極性不高 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
如果隨機調(diào)查這個班的一名學生,求事件A:抽到不積極參加班級工作且學習積極性不高的學生的概率;
若不積極參加班級工作且學習積極性高的7名學生中有兩名男生,現(xiàn)從中抽取兩名學生參加某項活動,請用字母代表不同的學生列舉出抽取的所有可能結(jié)果;
在的條件下,求事件B:兩名學生中恰有1名男生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓過點,且與圓外切于點,過點作圓的兩條切線,,切點為,.
(1)求圓的標準方程;
(2)試問直線是否恒過定點?若過定點,請求出定點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com