證明方程x32x120只有一個實根。

 

答案:
解析:

證法一:設fx)=x3+2x+12。當x=-2時,

f(-2)=(-2)3+2×(-2)+12=0。

x=-2是方程x3+2x+12=0的實根。

f′(x)=3x2+2>0,

fx)=x3+2x+12在(-∞,+∞)上單調(diào)遞增,即對任意實數(shù)x1、x2,當x1x2(或x1x2)時,fx1)>fx2)(或fx1)<f'x2))。

∴ 若存在x1、x2x1x2,使fx1)=fx2)=0,則與函數(shù)fx)在(-∞,+∞)上單調(diào)遞增相矛盾。

∴ 方程x2+2x+12=0只有一個實根。

證法二:x3+2x+12=0,x3+8+2x+4=0,

x+2)(x2-2x+4)+2(x+2)=0,(x+2)(x2-2x+6)=0,

x+2=0或x2-2x+6=0! x=-2。

x2-2x+6=0的判別式△=4-24=-20<0。

x2-2x+6=0無實數(shù)解。

x2+2x+12=0只有一個實根。

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).定義:(1)f(x)的導數(shù)f′(x)(也叫f(x)一階導數(shù))的導數(shù),f″(x)為f(x)的二階導數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0) )為函數(shù)y=f(x)的“拐點”;定義:(2)設x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)恒成立,則函數(shù)y=f(x)的圖象關于點(x0,f(x0))對稱.
(1)己知f(x)=x3-3x2+2x+2,求函數(shù)f(x)的“拐點”A的坐標;
(2)檢驗(1)中的函數(shù)f(x)的圖象是否關于“拐點”A對稱;
(3)對于任意的三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)寫出一個有關“拐點”的結(jié)論(不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•東營一模)對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設f''(x)是函數(shù)y=f(x)的導數(shù)y=f'(x)的導數(shù),若方程f''(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”;
定義:(2)設x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關于點(x0,f(x0))對稱.
已知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數(shù)f(x)的“拐點”A的坐標
(2)檢驗函數(shù)f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關“拐點”的結(jié)論(不必證明)
(3)寫出一個三次函數(shù)G(x),使得它的“拐點”是(-1,3)(不要過程)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

證明方程x32x120只有一個實根。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省無錫市濱湖區(qū)梅村高級中學高三(上)11月月考數(shù)學試卷(理科)(解析版) 題型:解答題

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
定義:(1)設f''(x)是函數(shù)y=f(x)的導數(shù)y=f'(x)的導數(shù),若方程f''(x)=0有實數(shù)解x,則稱點(x,f(x))為函數(shù)y=f(x)的“拐點”;
定義:(2)設x為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x+x)+f(x-x)=2f(x)成立,則函數(shù)y=f(x)的圖象關于點(x,f(x))對稱.
已知f(x)=x3-3x2+2x+2,請回答下列問題:
(1)求函數(shù)f(x)的“拐點”A的坐標
(2)檢驗函數(shù)f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關“拐點”的結(jié)論(不必證明)
(3)寫出一個三次函數(shù)G(x),使得它的“拐點”是(-1,3)(不要過程)

查看答案和解析>>

同步練習冊答案