如圖,直角梯形中,,,,過,垂足為.、分別是的中點.現(xiàn)將沿折起,使二面角的平面角為.

(1)求證:平面平面;
(2)求直線與面所成角的正弦值.

(1)詳見解析;(2)求直線與面所成角的正弦值為.

解析試題分析:(1)利用折疊前以及、在同一平面內(nèi),得到在折疊后,由已知條件,結(jié)合直線與平面垂直的判定定理可以證明平面,最終利用平面與平面垂直的判定定理即可證明平面平面;(2)解法一是利用空間向量法,即以點為坐標(biāo)原點,、分別為軸、軸建立空間坐標(biāo)系,將二面角進行適當(dāng)轉(zhuǎn)化,再利用空間向量法求出直線與面所成角的正弦值;解法二是利用到(1)中的結(jié)論平面,只需作于點,于是確定直線與面所成角為,借助點的中點從而得到為中位線,于是確定點的中點,連接,在直角三角形中計算出.
試題解析:(1)證明:DEAE,CEAE,,
 AE平面,   3分
 AE平面,平面平面.  5分
(2)(方法一)以E為原點,EA、EC分別為軸,建立空間直角坐標(biāo)系  6分
DEAE,CEAE,是二面角的平面角,即=,  7分
,,,
A(2,0,0),B(2,1,0),C(0,1,0),E(0,0,0),D(0,,1).  9分
分別是、的中點,F,G   10分
=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐E—ABCD中,底面ABCD為邊長為5的正方形,AE平面CDE,AE=3.

(1)若的中點,求證:平面;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.

(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,四棱錐中,底面是個邊長為的正方形,側(cè)棱底面,且,的中點.

(I)證明:平面;
(II)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱柱中, D是 AC的中點。

求證://平面 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=90°,側(cè)面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.

(I)求證:CD⊥平面PAC;
(II)側(cè)棱PA上是否存在點E,使得BE∥平面PCD?若存在,指出點E的位置,并證明,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

證明梯形是一個平面圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是圓的直徑,垂直于圓所在的平面,是圓上的點.

(1)求證:平面平面;
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形為矩形,平面⊥平面,上的一點,且⊥平面

(1)求證:;
(2)求證:∥平面

查看答案和解析>>

同步練習(xí)冊答案