中, ,平分于點.
證明:(1)
(2)

證明: (1)由題意…………2分
由正弦定理知: ①   
同理 ②       …………4分
由①、②可知 ,      …………6分
(2)在邊上截取,連接,
因為, ∴ ,
,∴,                
四點共圓. ………… 8分
又∵, ∴ (等角對等弦), 
, ∴, 即 ,…………10分

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,△ABC內(nèi)接于⊙O,AB =AC,直線MN切⊙O于點C,弦BD∥MN,AC與BD相交于點E.
(1)求證:△ABE≌△ACD;
(2)若AB =6,BC =4,求AE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)選修4-1幾何證明選講
如圖,AB是O的直徑,BE為圓0的切線,點c為o 上不同于A、B的一點,AD為的平分線,且分別與BC 交于H,與O交于D,與BE交于E,連結(jié)BD、CD.

(I )求證:BD平分
(II)求證:AH•BH=AE•HC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知,如圖,AB是⊙O的直徑,G為AB延長線上的一點,GCD是⊙O的割線,過點G作AB的垂線,交直線AC于點E,交AD于點F,過G作⊙O的切線,切點為H.

求證:(1)C,D,F(xiàn),E四點共圓;
(2)GH2=GE·GF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是⊙的直徑,是⊙上的點,的角平分線,過點點作,交的延長線于點,,垂足為點,

⑴求證:是⊙的切線    
⑵求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點D作AC的平行線DE,交BA的延長線于點E。
求證:(1);
(2)DEDC=AEBD。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

若直線L的參數(shù)方程為為參數(shù)),則直線L的傾斜角的余弦值為(    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

選修4-1:幾何證明選講
如圖所示,圓的直徑,為圓周上一點,,過作圓的切線,過的垂線,垂足為,求∠DAC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


(本小題滿分10分)

圓的兩條弦AB、CD交于點F,從F點引BC的平行線和直線
DA的延長線交于點P,再從點P引這個圓的切線,切點是Q
求證:PF=PQ.

查看答案和解析>>

同步練習冊答案