【題目】已知數(shù)列滿足:對任意均有(p為常數(shù),且),若,則的所有可能取值的集合是___________.
【答案】
【解析】
依題意,可得an+1+2=p(an+2),再對a1=﹣2與a1≠﹣2討論,特別是a1≠﹣2時對公比p分|p|>1與|p|<1,即可求得a1所有可能值,從而可得答案.
解:∵an+1=pan+2p﹣2,
∴an+1+2=p(an+2),
∴①若a1=﹣2,則a1+1+2=p(a1+2)=0,a2=﹣2,同理可得,a3=a4=a5=﹣2,即a1=﹣2符合題意;
②若a1≠﹣2,p為不等于0與1的常數(shù),則數(shù)列{an+2}是以p為公比的等比數(shù)列,
∵ai∈{﹣18,﹣6,﹣2,6,11,30},i=2,3,4,5,
an+2可以取﹣16,﹣4,8,32,
∴若公比|p|>1,則p=﹣2,由a2+2=﹣4=﹣2(a1+2)得:a1;
若公比|p|<1,則p,由a2+2=32(a1+2)得:a1=﹣66.
綜上所述,滿足條件的a1所有可能值為﹣2,,﹣66.
故答案為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1、F2分別是雙曲線1(a>0,b>0)的左、右焦點,若雙曲線的右支上存在一點P,使得()0(O為坐標原點),且|PF1||PF2|,則雙曲線的離心率的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】九章算術(shù)給出求羨除體積的“術(shù)”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側(cè)棱的長,“深”指一條側(cè)棱到另兩條側(cè)棱所在平面的距離,“袤”指這兩條側(cè)棱所在平行線之間的距離,用現(xiàn)代語言描述:在羨除中,,,,,兩條平行線與間的距離為h,直線到平面的距離為,則該羨除的體積為已知某羨除的三視圖如圖所示,則該羨除的體積為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的離心率為,其左焦點到橢圓上點的最遠距離為3,點為橢圓外一點,不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分
(1)求橢圓C的標準方程
(2)求面積最大值時的直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第十一屆全國少數(shù)民族傳統(tǒng)體育運動會在河南鄭州舉行,某項目比賽期間需要安排3名志愿者完成5項工作,每人至少完成一項,每項工作由一人完成,則不同的安排方式共有多少種
A.60B.90C.120D.150
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生考試中答對但得不了滿分的原因多為答題不規(guī)范,具體表現(xiàn)為:解題結(jié)果正確,無明顯推理錯誤,但語言不規(guī)范、缺少必要文字說明、卷面字跡不清、得分要點缺失等,記此類解答為“類解答”.為評估此類解答導(dǎo)致的失分情況,某市教研室做了一項試驗:從某次考試的數(shù)學(xué)試卷中隨機抽取若干屬于“類解答”的題目,掃描后由近百名數(shù)學(xué)老師集體評閱,統(tǒng)計發(fā)現(xiàn),滿分12分的題,閱卷老師所評分數(shù)及各分數(shù)所占比例大約如下表:
教師評分(滿分12分) | 11 | 10 | 9 |
各分數(shù)所占比例 |
某次數(shù)學(xué)考試試卷評閱采用“雙評+仲裁”的方式,規(guī)則如下:兩名老師獨立評分,稱為一評和二評,當(dāng)兩者所評分數(shù)之差的絕對值小于等于1分時,取兩者平均分為該題得分;當(dāng)兩者所評分數(shù)之差的絕對值大于1分時,再由第三位老師評分,稱之為仲裁,取仲裁分數(shù)和一、二評中與之接近的分數(shù)的平均分為該題得分;當(dāng)一、二評分數(shù)和仲裁分數(shù)差值的絕對值相同時,取仲裁分數(shù)和前兩評中較高的分數(shù)的平均分為該題得分.(假設(shè)本次考試閱卷老師對滿分為12分的題目中的“類解答”所評分數(shù)及比例均如上表所示,比例視為概率,且一、二評與仲裁三位老師評分互不影響).
(1)本次數(shù)學(xué)考試中甲同學(xué)某題(滿分12分)的解答屬于“類解答”,求甲同學(xué)此題得分的分布列及數(shù)學(xué)期望;
(2)本次數(shù)學(xué)考試有6個解答題,每題滿分均為12分,同學(xué)乙6個題的解答均為“類解答”,記該同學(xué)6個題中得分為的題目個數(shù)為,,,計算事件“”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列{an}中,an>0 (n∈N ),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又a3與a5的等比中項為2.
(1) 求數(shù)列{an}的通項公式;
(2) 設(shè),數(shù)列{bn}的前n項和為Sn,當(dāng)最大時,求n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(1)求在處的切線方程;
(2)若,證明在上單調(diào)遞增;
(3)設(shè)對任意,成立求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上有唯一零點,試求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com