某學生在上學路上要經(jīng)過4個路口,假設在各路口是否遇到紅燈是相互獨立的,遇到紅燈的概率都是,遇到紅燈時停留的時間都是2 分鐘. 設這名學生在路上遇到紅燈的個數(shù)為變量、停留的總時間為變量
(1)求這名學生在上學路上到第三個路口時首次遇到紅燈的概率;
(2)這名學生在上學路上遇到紅燈的個數(shù)至多是2個的概率.
(3)求的標準差
(1)
(2)
(3)

試題分析:解(1)設這名學生在上學路上到第三個路口時首次遇到紅燈為事件A,因為事件A等于事件“這名學生在第一和第二個路口沒有遇到紅燈,在第三個路口遇到紅燈”,所以事件A的概率為              4分
(2)設這名學生在上學路遇到紅燈的個數(shù)至多是2個為事件B,這名學生在上學路上遇到紅燈的個數(shù)~.
則由題意:

∴這名學生在上學路遇到紅燈的個數(shù)至多是2個的概率為.        10分
(3)~,∴,                12分
,∴,
                        14分
點評:主要是考查了獨立事件的概率以及二項分布的期望值和方差的求解運用,屬于中檔題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)為了解初三學生女生身高情況,某中學對初三女生身高進行了一次抽樣調(diào)查,根據(jù)所得數(shù)據(jù)整理后列出了頻率分布表如下:
組 別       頻數(shù)   頻率   
145.5~149.5      1       0.02   
149.5~153.5      4       0.08   
153.5~157.5    22     0.44   
157.5~161.5      13      0.26   
161.5~165.5      8       0.16   
165.5~169.5     m       n  
合 計        M       N  
(1)求出表中所表示的數(shù)m,n,M,N分別是多少?
(2)畫出頻率分布直方圖和頻率分布折線圖.
(3)若要從中再用分層抽樣方法抽出10人作進一步調(diào)查,則身高在[153.5,161.5)范圍內(nèi)的應抽出多少人?
(4)根據(jù)頻率分布直方圖,分別求出被測女生身高的眾數(shù),中位數(shù)和平均數(shù)?(結果保留一位小數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知某一隨機變量ξ的概率分布列如下,且E(ξ)=6.3,則a的值為(  )
ξ
4
a
9
P
0.5
0.1
b
A.5     B.6                 C.7        D.8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩人在罰球線互不影響地投球,命中的概率分別為,投中得1分,投不中得0分.
(1)甲、乙兩人在罰球線各投球一次,求兩人得分之和的數(shù)學期望;
(2)甲、乙兩人在罰球線各投球二次,求甲恰好比乙多得分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋擲甲、乙兩顆骰子,若事件A:“甲骰子的點數(shù)大于4”;事件B:“甲、乙兩骰子的點數(shù)之和等于7”,則的值等于 (   。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設隨機變量服從正態(tài)分布.若,則的值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分) 某工廠組織工人參加上崗測試,每位測試者最多有三次機會,一旦某次測試通過,便可上崗工作,不再參加以后的測試;否則就一直測試到第三次為止。設每位工人每次測試通過的概率依次為0.2,0.5,0.5,每次測試相互獨立。
(1)求工人甲在這次上崗測試中參加考試次數(shù)為2、3的概率分別是多少?
(2)若有4位工人參加這次測試,求至少有一人不能上崗的概率。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

把一顆骰子投擲兩次,第一次出現(xiàn)的點數(shù)記為,第二次出現(xiàn)的點數(shù)記為,方程組只有一組解的概率是_________.(用最簡分數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如果隨機變量,
.已知隨機變量,則           

查看答案和解析>>

同步練習冊答案