【題目】定義域?yàn)镽的偶函數(shù)f(x)滿足x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時(shí),f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(x+1)恰有三個(gè)零點(diǎn),則a的取值范圍是(
A.(0,
B.(0,
C.( ,
D.(

【答案】C
【解析】解:∵f(x+2)=f(x)﹣f(1), 且f(x)是定義域?yàn)镽的偶函數(shù),
令x=﹣1可得f(﹣1+2)=f(﹣1)﹣f(1),
又f(﹣1)=f(1),
可得f(1)=0 則有,f(x+2)=f(x),
∴f(x)是周期為2的偶函數(shù).
當(dāng)x∈[2,3]時(shí),f(x)=﹣2x2+12x﹣18=﹣2(x﹣3)2
函數(shù)f(x)的圖象為開(kāi)口向下、頂點(diǎn)為(3,0)的拋物線.
函數(shù)y=f(x)﹣loga(x+1)在(0,+∞)上恰有三個(gè)零點(diǎn),
令g(x)=loga(x+1),則f(x)的圖象和g(x)的圖象恰有3個(gè)交點(diǎn).
作出函數(shù)的圖象,如圖所示,
∵f(x)≤0,∴g(x)≤0,可得0<a<1.
要使函數(shù)y=f(x)﹣loga(|x|+1)在(0,+∞)上恰有三個(gè)零點(diǎn),
則有g(shù)(2)>f(2)且f(4)>g(4),即 loga(2+1)>f(2)=﹣2,且﹣2>loga(4+1),
解得 <a<
故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足:a1= ,an=an12+an1(n≥2且n∈N).
(Ⅰ)求a2 , a3;并證明:2 ≤an 3
(Ⅱ)設(shè)數(shù)列{an2}的前n項(xiàng)和為An , 數(shù)列{ }的前n項(xiàng)和為Bn , 證明: = an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知長(zhǎng)方體ABCD-A1B1C1D1中,底面ABCD為正方形,AB=4,AA1=2,點(diǎn)E1在棱C1D1上,且D1E1=3。

(I)在棱CD上確定一點(diǎn)E,使得直線EE1∥平面D1DB,并寫出證明過(guò)程;

(II)求證:平面A1ACC1⊥平面D1DB;

(III)若動(dòng)點(diǎn)F在正方形ABCD內(nèi),且AF=2,請(qǐng)說(shuō)明點(diǎn)F的軌跡,試求E1F長(zhǎng)度的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB∥DC,DA⊥AB,AB=AP=2,DA=DC=1,E為PC上一點(diǎn),且PE= PC.

(Ⅰ)求PE的長(zhǎng);
(Ⅱ)求證:AE⊥平面PBC;
(Ⅲ)求二面角B﹣AE﹣D的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=3sin(2x﹣ )的圖象可以由y=3sin2x的圖象(
A.向右平移 個(gè)單位長(zhǎng)度得到
B.向左平移 個(gè)單位長(zhǎng)度得到
C.向右平移 個(gè)單位長(zhǎng)度得到
D.向左平移 個(gè)單位長(zhǎng)度得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】自貢某個(gè)工廠于2016年下半年對(duì)生產(chǎn)工藝進(jìn)行了改造(每半年為一個(gè)生產(chǎn)周期),從2016年一年的產(chǎn)品中用隨機(jī)抽樣的方法抽取了容量為50的樣本,用莖葉圖表示如圖所示,已知每個(gè)生產(chǎn)周期內(nèi)與其中位數(shù)誤差在±5范圍內(nèi)(含±5)的產(chǎn)品為優(yōu)質(zhì)品,與中位數(shù)誤差在±15范圍內(nèi)(含±15)的產(chǎn)品為合格品(不包括優(yōu)質(zhì)品),與中位數(shù)誤差超過(guò)±15的產(chǎn)品為次品.企業(yè)生產(chǎn)一件優(yōu)質(zhì)品可獲利潤(rùn)20元,生產(chǎn)一件合格品可獲利潤(rùn)10元,生產(chǎn)一件次品要虧損10元.

(Ⅰ)求該企業(yè)2016年一年生產(chǎn)一件產(chǎn)品的利潤(rùn)的分布列和期望;
(Ⅱ)是否有95%的把握認(rèn)為“優(yōu)質(zhì)品與生產(chǎn)工藝改造有關(guān)”.
附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)定義在區(qū)間(0,+∞)上,且f(1)=0,導(dǎo)函數(shù)f′(x)=,函數(shù)g(x)=f(x)+f′(x).

(1)求函數(shù)g(x)的最小值;

(2)是否存在x0>0,使得不等式|g(x)-g(x0)|<對(duì)任意x>0恒成立?若存在,請(qǐng)求出x0的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)邊分別是a,b,c,若sin(A﹣B)= sinAcosB﹣ sinBcosA.
(1)求證:A=B;
(2)若A= ,a= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式組表示的平面區(qū)域?yàn)?/span>,若函數(shù)的圖象上存在區(qū)域內(nèi)的點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案