已知().
⑴求的單調(diào)區(qū)間;
⑵若在內(nèi)有且只有一個(gè)極值點(diǎn), 求a的取值范圍.
⑴①當(dāng)時(shí),在和單調(diào)遞增,在單調(diào)遞減;②當(dāng)時(shí),單調(diào)遞增;
⑵.
【解析】(1)先求出,然后再求出
當(dāng)時(shí),f(x)的增區(qū)間為R,沒(méi)有減區(qū)間;當(dāng)時(shí),再求出求出其單調(diào)增(減)區(qū)間.
(2) 若在上只有一個(gè)極值點(diǎn),須滿(mǎn)足且要滿(mǎn)足.據(jù)此建立關(guān)于a的不等式組求出a的取值范圍.
解:⑴,;
①當(dāng)時(shí),即時(shí),方程有兩個(gè)根,
分別為,;故在和單調(diào)遞增,在單調(diào)遞減;
②當(dāng)時(shí),單調(diào)遞增;
⑵由在上只有一個(gè)極值點(diǎn),知,即;
且要滿(mǎn)足,解得,綜合得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)
(Ⅰ)求的單調(diào)減區(qū)間
(Ⅱ)若在區(qū)間[-2,2].上的最大值為20,求它在該區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年重慶市七校聯(lián)盟高三上學(xué)期聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(Ⅰ)求的單調(diào)減區(qū)間;
(Ⅱ)求在區(qū)間上最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省德州市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(I)討論的單調(diào)性;
(Ⅱ)若在(1,+)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆遼寧省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
(Ⅰ)求的單調(diào)減區(qū)間;
(Ⅱ)若在區(qū)間[-2,2].上的最大值為20,求它在該區(qū)間上的最小值.
【解析】(1)求導(dǎo)令導(dǎo)數(shù)小于零.
(2)利用導(dǎo)數(shù)列表求極值,最值即可.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:黑龍江省雙鴨山一中09-10學(xué)年高二下學(xué)期期中考試(理) 題型:解答題
已知函數(shù)
(Ⅰ)求的單調(diào)減區(qū)間;
(Ⅱ)若在區(qū)間[-2,2].上的最大值為20,求它在該區(qū)間上的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com