A. | $\frac{25}{6}$ | B. | $\frac{8}{3}$ | C. | $\frac{11}{3}$ | D. | 4 |
分析 由約束條件作差可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)可得2a+3b=6,然后利用基本不等式求$\frac{2b+3a}{ab}$的最小值.
解答 解:由約束條件$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$作差可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{x-y+2=0}\\{3x-y-6=0}\end{array}\right.$,解得A(4,6),
化目標(biāo)函數(shù)z=ax+by(a>0,b>0)為y=-$\frac{a}x+\frac{z}$,
由圖可知,當(dāng)直線y=-$\frac{a}x+\frac{z}$過A時(shí),直線在y軸上的截距最大,z有最大值為4a+6b=12.
則2a+3b=6.
∴$\frac{2b+3a}{ab}$=$\frac{2}{a}+\frac{3}$=($\frac{2}{a}+\frac{3}$)($\frac{a}{3}+\frac{2}$)=$\frac{2}{3}+\frac{3}{2}+\frac{a}+\frac{a}$$≥\frac{13}{6}$+2$\sqrt{\frac{a}•\frac{a}}$=$\frac{13}{6}+\frac{12}{6}=\frac{25}{6}$.
當(dāng)且僅當(dāng)a=b時(shí)上式等號(hào)成立.
∴$\frac{2b+3a}{ab}$的最小值為$\frac{25}{6}$.
故選:A.
點(diǎn)評(píng) 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,訓(xùn)練了利用基本不等式求最值,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2=9,則x=±3”的否命題為“若x2=9,則x≠±3” | |
B. | 若命題P:?x0∈R,$x_0^2-3{x_0}-1>0$,則命題?P:?x∈R,$x_{\;}^2-3x-1<0$ | |
C. | 設(shè)$\overrightarrow a,\overrightarrow b$是兩個(gè)非零向量,則“$\overrightarrow a•\overrightarrow b<0$是“$\overrightarrow a,\overrightarrow b$夾角為鈍角”的必要不充分條件 | |
D. | 若命題P:$\frac{1}{x-2}>0$,則¬P:$\frac{1}{x-2}≤0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com