【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)證明:在區(qū)間上有且僅有個(gè)零點(diǎn).
【答案】(1);(2)見解析
【解析】
(1)給函數(shù)求導(dǎo),將切點(diǎn)的橫坐標(biāo)帶入原函數(shù),導(dǎo)函數(shù),分別求出切點(diǎn)和斜率,用點(diǎn)斜式寫出直線方程即可.
(2)當(dāng)時(shí),,所以,函數(shù)在區(qū)間上沒有零點(diǎn);又,下面只需證明函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn).因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,,,存在,使得,函數(shù)在處取得極小值,則,又,所以,由零點(diǎn)存在定理可知,函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn).綜上可得,函數(shù)在上有且僅有兩個(gè)零點(diǎn).
(1),則,
,.
因此,函數(shù)在點(diǎn)處的切線方程為,即.
(2)當(dāng)時(shí),,此時(shí),,
所以,函數(shù)在區(qū)間上沒有零點(diǎn);
又,下面只需證明函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn).
,構(gòu)造函數(shù),則,
當(dāng)時(shí),,
所以,函數(shù)在區(qū)間上單調(diào)遞增,
,,
由零點(diǎn)存在定理知,存在,使得,
當(dāng)時(shí),,當(dāng)時(shí),.
所以,函數(shù)在處取得極小值,則,
又,所以,
由零點(diǎn)存在定理可知,函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn).
綜上可得,函數(shù)在上有且僅有兩個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐的底面是邊長(zhǎng)為2的正方形,平面平面,,.
(1)求證:平面平面;
(2)設(shè)為的中點(diǎn),問邊上是否存在一點(diǎn),使平面,并求此時(shí)點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線方程是.
(Ⅰ)求實(shí)數(shù),的值;
(Ⅱ)若函數(shù)有兩個(gè)不同的零點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若拋物線的焦點(diǎn)為,是坐標(biāo)原點(diǎn),為拋物線上的一點(diǎn),向量與軸正方向的夾角為60°,且的面積為.
(1)求拋物線的方程;
(2)若拋物線的準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,求當(dāng)取得最大值時(shí),直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)判斷函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù);
(Ⅱ)設(shè)函數(shù)在區(qū)間上的極值點(diǎn)從小到大分別為.證明:
(i);
(ii)對(duì)一切成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從盛滿2升純酒精的容器里倒出1升純酒精,然后填滿水,再倒出1升混合溶液后又用水填滿,以此繼續(xù)下去,則至少應(yīng)倒 次后才能使純酒精體積與總?cè)芤旱捏w積之比低于10%.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn),,拋物線的焦點(diǎn)為線段中點(diǎn).
(1)求拋物線的方程;
(2)過點(diǎn)的直線交拋物線于兩點(diǎn),,過點(diǎn)作拋物線的切線,為切線上的點(diǎn),且軸,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓的方程為,且直線與以原點(diǎn)為圓心,橢圓短軸長(zhǎng)為直徑的圓相切.
(1)求的值;
(2)若橢圓左右頂點(diǎn)分別為,過點(diǎn)作直線與橢圓交于兩點(diǎn),且位于第一象限,在線段上.
①若和的面積分別為,問是否存在這樣的直線使得?請(qǐng)說明理由;
②直線與直線交于點(diǎn),連結(jié),記直線的斜率分別為,求證:為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com