已知橢圓E=1.

(1)直線lyxm與橢圓E有兩個(gè)公共點(diǎn),求實(shí)數(shù)m的取值范圍.

(2)以橢圓E的焦點(diǎn)F1、F2為焦點(diǎn),經(jīng)過(guò)直線l′:xy=9上一點(diǎn)P作橢圓C,當(dāng)C的長(zhǎng)軸最短時(shí),求C的方程.

解: (1)直線l與橢圓E有兩個(gè)公共點(diǎn)的條件是:

方程組有兩組不同解,

消去y,得

3x2+4mx+2m2-8=0.

Δ=16m2-12(2m2-8)>0,

-2<m<2.

∴實(shí)數(shù)m的取值范圍是(-2,2).

(2)依題意,F1(-2,0)、F2(2,0).

作點(diǎn)F1(-2,0)關(guān)于l′的對(duì)稱(chēng)點(diǎn)F1′(9,11).

設(shè)Pl′與橢圓的公共點(diǎn),則2a=|PF1|+|PF2|

=|PF1|+|PF2|≥|F1F2|=.

∴(2a)min,

此時(shí),a2,b2a2c2.

∴長(zhǎng)軸最短的橢圓方程是=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 北師大課標(biāo)高二版(選修1-2) 2009-2010學(xué)年 第34期 總第190期 北師大課標(biāo) 題型:047

離心率e=的橢圓稱(chēng)為“黃金橢圓”,已知橢圓E:=1(a>b>0)的一個(gè)焦點(diǎn)為F(c,0).求證:若a,b,c不成等比數(shù)列,則E一定不是“黃金橢圓”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河北省正定中學(xué)2011-2012學(xué)年度高三上學(xué)期第二次月考數(shù)學(xué)理科試題 題型:044

已知橢圓E:=1(a>b>0)的右焦點(diǎn)F,過(guò)原點(diǎn)和x軸不重合的直線與橢圓E相交于A,B兩點(diǎn),且|AF|+|BF|=2,|AB|最小值為2.

(Ⅰ)求橢圓E的方程;

(Ⅱ)若圓:x2+y2的切線l與橢圓E相交于P,Q兩點(diǎn),當(dāng)P,Q兩點(diǎn)橫坐標(biāo)不相等時(shí),問(wèn):OP與OQ是否垂直?若垂直,請(qǐng)給出證明;若不垂直,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山西省太原五中2012屆高三2月月考數(shù)學(xué)文科試題 題型:044

已知橢圓E:=1(a>b>0)的右焦點(diǎn)F,過(guò)原點(diǎn)和x軸不重合的直線與橢圓E相交于A,B兩點(diǎn),且|AF|+|BF|=2,|AB|最小值為2.

(Ⅰ)求橢圓E的方程;

(Ⅱ)若圓:x2+y2的切線l與橢圓E相交于P,Q兩點(diǎn),當(dāng)P,Q兩點(diǎn)橫坐標(biāo)不相等時(shí),問(wèn):OP與OQ是否垂直?若垂直,請(qǐng)給出證明;若不垂直,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省武漢市高三11月調(diào)考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知橢圓E:=1(a>b>0)的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線交E于A,B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為(    )

A.=1      B.=1      C.=1      D.=1

 

查看答案和解析>>

同步練習(xí)冊(cè)答案