【題目】已知定義域為的奇函數(shù)的圖像是一條連續(xù)不斷的曲線,當(dāng)時,;當(dāng)時,,且,則關(guān)于的不等式的解集為(

A. B. C. D.

【答案】A

【解析】根據(jù)奇函數(shù)的圖象關(guān)于原點對稱,通過已知條件知道:函數(shù)f(x)(∞,1),(1,+∞)上單調(diào)遞減;[1,1]上單調(diào)遞增;

f(0)=0,f(2)=f(2)=0;

∴若1<x<1時:x+1>0,∴由原不等式得f(x)>0=f(0),根據(jù)函數(shù)f(x)(1,1)上單調(diào)遞增得0<x<1;

x1,x+1>0,∴由原不等式得f(x)>0=f(2),根據(jù)函數(shù)f(x)[1,+∞)上單調(diào)遞減得1x<2;

x<1,x+1<0,∴由原不等式得f(x)<0=f(2),根據(jù)函數(shù)f(x)(∞,1)上單調(diào)遞減得2<x<1;

∴原不等式的解集為:(0,2)(2,1).

本題選擇A選項.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求曲線在點處的切線方程;

(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求的取值范圍;

(3)在(2)的條件下,設(shè)函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)寫出曲線的直角坐標(biāo)方程;

(2)已知點的直角坐標(biāo)為,直線與曲線相交于不同的兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=x2+2x.
(Ⅰ)求f(0)的值;
(Ⅱ)求此函數(shù)在R上的解析式;
(Ⅲ)若對任意的t∈R,不等式f(t+1)+f(m﹣2t2)<0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個正數(shù)a,b滿足a+b=1
(1)求證: ;
(2)若不等式 對任意正數(shù)a,b都成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=f(x)在R上可導(dǎo)且滿足不等式xf′(x)+f(x)>0恒成立,且常數(shù)a,b滿足a>b,則下列不等式一定成立的是(
A.af(a)>bf(b)
B.af(b)>bf(a)
C.af(a)<bf(b)
D.af(b)<bf(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的奇函數(shù)的圖像是一條連續(xù)不斷的曲線,當(dāng)時,;當(dāng)時,,且,則關(guān)于的不等式的解集為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2﹣3x+2=0},B={x|x2﹣mx+m﹣1=0}若A∪B=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線E:y2=4x的焦點為F,準(zhǔn)線lx軸的交點為A.點C在拋物線E上,以C為圓心, |CO| 為半徑作圓,設(shè)圓C與準(zhǔn)線l交于不同的兩點M,N.

(1)若點C的縱坐標(biāo)為2,求|MN| .
(2)若|AF|2=|AM|·|AN| ,求圓C的半徑.

查看答案和解析>>

同步練習(xí)冊答案