已知雙曲線=1的右焦點(diǎn)是F,右頂點(diǎn)是A,虛軸的上端點(diǎn)是B,·=6-4,∠BAF=150°.

(1)求雙曲線的方程;

(2)設(shè)Q是雙曲線上的點(diǎn),且過(guò)點(diǎn)F、Q的直線l與y軸交于點(diǎn)M,若+2=0,求直線l的斜率.

(1)(2)k=±


解析:

(1)由條件知A(a,0),B(0,b),F(c,0)

·=(-a, b)·(c-a,0)=a(a-c)=6-4

·

 

·

 
cos∠BAF=

=-=cos150°=-.

∴a=c,代入a(a-c)=6-4中得c=2.

∴a=,b2=c2-a2=2,故雙曲線的方程為.

(2)∵點(diǎn)F的坐標(biāo)為(2,0).

∴可設(shè)直線l的方程為y=k(x-2),

令x=0,得y=-2k,即M(0,-2k)

設(shè)Q(m,n),則由+2=0得

(m,n+2k)+2(2-m,-n)=(0,0).

即(4-m,2k-n)=(0,0).

,∵.

=1,得k2=,k=±.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:
x2
9
-
y2
16
=1
的左、右焦 點(diǎn)分別為F1、F2,P為C的右支上一點(diǎn),且|
PF2
|=|
F1F2
|,則△PF1F2
的面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
cos2θ
-
y2
sin2θ
=1
(θ為銳角)的右焦為F,P是右支上任意一點(diǎn),以P為圓心,PF長(zhǎng)為半徑的圓在右準(zhǔn)線上截得的弦長(zhǎng)恰好等于|PF|,則θ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年貴州省高三第一次月考文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)已知橢圓的方程為 ,雙曲線的左、右焦

 

點(diǎn)分別是的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn).

(1)求雙曲線的方程;                                             

(2)若直線與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A和B,求的范圍。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案