【題目】已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上,且

1)求拋物線的方程;

2)已知點(diǎn),延長(zhǎng)交拋物線于點(diǎn),證明:以點(diǎn)為圓心且與直線相切的圓,必與直線相切.

【答案】(1);(2)詳見解析

【解析】

1)由拋物線定義可得:,解得.即可得出拋物線的方程.

2)由點(diǎn)在拋物線上,解得,不妨取,,,可得直線的方程,與拋物線方程聯(lián)立化為,解得,.又,計(jì)算,,可得,,即可證明以點(diǎn)為圓心且與直線相切的圓,必與直線相切.

1)解:由拋物線定義可得:,解得

拋物線的方程為;

2)證明:點(diǎn)在拋物線上,

,解得,不妨取,,,

直線的方程:,

聯(lián)立拋物線,化為,解得,

,

,

軸平分,

因此點(diǎn)到直線,的距離相等,

以點(diǎn)為圓心且與直線相切的圓,必與直線相切.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,橢圓的短半軸長(zhǎng)等于圓的半徑,且過右焦點(diǎn)的直線與圓相切于點(diǎn)

1)求橢圓的方程;

2)若動(dòng)直線與圓相切,且與相交于兩點(diǎn),求點(diǎn)到弦的垂直平分線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個(gè)無窮數(shù)列的前項(xiàng)和分別為、,,對(duì)任意的,都有.

1)求數(shù)列的通項(xiàng)公式;

2)若為等差數(shù)列,對(duì)任意的,都有,證明:;

3)若為等比數(shù)列,,,求滿足)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知AB是圓O的直徑,CD是圓上不同兩點(diǎn),且,O所在平面.

1)求直線PBCD所成角;

2)若PB與圓O所在平面所成角為,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合D{x1,x2|x10,x20,x1+x2k}(其中k為正常數(shù)).

1)設(shè),求的取值范圍

2)求證:當(dāng)時(shí),不等式對(duì)任意恒成立

3)求使不等式對(duì)任意恒成立的的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)談?wù)?/span>的單調(diào)性;

2)若在區(qū)間上有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)對(duì)年銷售量(單位:t)的影響.該公司對(duì)近5年的年宣傳費(fèi)和年銷售量數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)年宣傳費(fèi)x(萬元)和年銷售量y(單位:t)具有線性相關(guān)關(guān)系,并對(duì)數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計(jì)量的值.

(1)根據(jù)表中數(shù)據(jù)建立年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程;

(2)已知這種產(chǎn)品的年利潤(rùn)zx,y的關(guān)系為,根據(jù)(1)中的結(jié)果回答下列問題:

①當(dāng)年宣傳費(fèi)為10萬元時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?

②估算該公司應(yīng)該投入多少宣傳費(fèi),才能使得年利潤(rùn)與年宣傳費(fèi)的比值最大.

附:回歸方程中的斜率和截距的最小二乘估計(jì)公式分別為

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓)的離心率是,點(diǎn)在短軸上,且。

(1)球橢圓的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知曲線的方程為,曲線的方程為.以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系

(1)求曲線,的直角坐標(biāo)方程;

(2)若曲線軸相交于點(diǎn),與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案