(08年朝陽區(qū)綜合練習一)(14分)
設數(shù)列的前項和為,對一切,點都在函數(shù) 的圖象上.
(Ⅰ)求的值,猜想的表達式,并用數(shù)學歸納法證明;
(Ⅱ)將數(shù)列依次按1項、2項、3項、4項循環(huán)地分為(),(,),(,,),(,,,);(),(,),(,,),(,,,);(),…,分別計算各個括號內(nèi)各數(shù)之和,設由這些和按原來括號的前后順序構(gòu)成的數(shù)列為,求的值;
(Ⅲ)設為數(shù)列的前項積,是否存在實數(shù),使得不等式對一切都成立?若存在,求出的取值范圍;若不存在,請說明理由.
解析:(Ⅰ)因為點在函數(shù)的圖象上,
故,所以.
令,得,所以;
令,得,所以;
令,得,所以.
由此猜想:.………………………………………………………………2分
用數(shù)學歸納法證明如下:
① 當時,有上面的求解知,猜想成立.
② 假設時猜想成立,即成立,
則當時,注意到,
故,.
兩式相減,得,所以.
由歸納假設得,,
故.
這說明時,猜想也成立.
由①②知,對一切,成立 .……………………………………5分
(Ⅱ)因為(),所以數(shù)列依次按1項、2項、3項、4項循環(huán)地分為(2),(4,6),(8,10,12),(14,16,18,20);(22),(24,26),(28,30,32),(34,36,38,40);(42),…. 每一次循環(huán)記為一組.由于每一個循環(huán)含有4個括號, 故 是第25組中第4個括號內(nèi)各數(shù)之和.由分組規(guī)律知,由各組第4個括號中所有第1個數(shù)組成的數(shù)列是等差數(shù)列,且公差為20. 同理,由各組第4個括號中所有第2個數(shù)、所有第3個數(shù)、所有第4個數(shù)分別組成的數(shù)列也都是等差數(shù)列,且公差均為20. 故各組第4個括號中各數(shù)之和構(gòu)成等差數(shù)列,且公差為80. 注意到第一組中第4個括號內(nèi)各數(shù)之和是68,
所以 .又=22,所以=2010.………………8分
(Ⅲ)因為,故,
所以.
又,
故對一切都成立,就是
對一切都成立.
設,則只需即可.
由于,
所以,故是單調(diào)遞減,于是.
令,即 ,
解得,或.
綜上所述,使得所給不等式對一切都成立的實數(shù)存在,的取值范圍是
.…………………………………………………………14分
注:(1)2個空的填空題,第一個空給3分,第二個空給2分. (2)如有不同解法,請閱卷老師酌情給分.
科目:高中數(shù)學 來源: 題型:
(09年江蘇百校樣本分析)(10分)挑選空軍飛行學員可以說是“萬里挑一”,要想通過需過“五關”――目測、初檢、復檢、文考、政審等. 某校甲、乙、丙三個同學都順利通過了前兩關,有望成為光榮的空軍飛行學員. 根據(jù)分析,甲、乙、丙三個同學能通過復檢關的概率分別是0.5,0.6,0.75,能通過文考關的概率分別是0.6,0.5,0.4,通過政審關的概率均為1.后三關相互獨立.
(1)求甲、乙、丙三個同學中恰有一人通過復檢的概率;
(2)設通過最后三關后,能被錄取的人數(shù)為,求隨機變量的期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(08年莆田四中一模理) (14分)
由函數(shù)確定數(shù)列,,若函數(shù)的反函數(shù) 能確定數(shù)列,,則稱數(shù)列是數(shù)列的“反數(shù)列”。
(1)若函數(shù)確定數(shù)列的反數(shù)列為,求的通項公式;
(2)對(1)中,不等式對任意的正整數(shù)恒成立,求實數(shù)的范圍;
(3)設,若數(shù)列的反數(shù)列為,與的公共項組成的數(shù)列為;求數(shù)列前項和
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(05年遼寧卷)(12分)
已知函數(shù).設數(shù)列滿足,,數(shù)列滿足
,…,
(Ⅰ)用數(shù)學歸納法證明;(Ⅱ)證明 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(05年湖北卷文)(12分)
設數(shù)列的前n項和為Sn=2n2,為等比數(shù)列,且
(Ⅰ)求數(shù)列和的通項公式;
(Ⅱ)設,求數(shù)列的前n項和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com